
1

2.5.- The standard language SQL

• SQL (Structured Query Language) is a standard language for defining and
manipulating (and selecting) a relational database.

• SQL includes:
• Features from Relational Algebra (Algebraic Approach).
• Features from Tuple Relational Calculus (Logical Approach).

• The most extended version nowadays is SQL2 (also called SQL’92).
– Almost all RDBMSs are SQL2 compliant.
– Some features from SQL3 (and some of the upcoming SQL4) are being

included in many RDBMSs.

2

SQL commands for defining relational schemas:

• create schema: gives name to a relational schema and declares the user who is
the owner of the schema.

• create domain: defines a new data domain.

• create table: defines a table, its schema and its associated constraints.

• create view: defines a view or derived relation in the relational schema.

• create assertion: defines general integrity constraints.

• grant: defines user authorisations for the operations over the DB objects.

All these commands have the opposite operation (DROP / REVOKE) and modification
(ALTER).

ORACLE

ORACLE

ORACLE

2.5.1.- SQL as a data definition language
(DDL)

3

2.5.1.1.- Schema Definition (SQL)

create schema [schema] [authorization user]

[list_of_schema_elements];

A schema element can be any of the following:
• Domain definition.
• Table definition.
• View definition.
• Constraint definition.
• Authorisation definition.

Removal of a relational schema definition:

drop schema schema {restrict | cascade};

4

2.5.1.2.- Domain Definition (SQL)

create domain domain [as] datatype

[default {literal | system_function | null }]

[domain_constraint_definition];

System functions:
– user
– current_user
– session_user
– current_date
– current_time
– current_timestamp

5

2.5.1.2.- Domain Definition (SQL)

A domain can be associated with a collection of constraints:

[constraint constraint]

check (conditional_expression)

[not] deferrable

• conditional_expression can express any condition that must meet every
value in the domain (must be TRUE or UNDEFINED)

• deferrable indicates that (if set to deferred and not to immediate) the
system must check the constraint at the end of the current transaction.

• not deferrable indicates that the system must check the constraint after
each atomic update instruction on the database.

6

2.5.1.2.- Domain Definition (SQL).
Example

CREATE DOMAIN angle AS FLOAT

DEFAULT 0

CHECK (VALUE >= 0 AND VALUE < 360)

NOT DEFERRABLE;

Removal of a domain:

drop domain domain [restrict | cascade]

7

2.5.1.3.- Table Definition (SQL).

CREATE TABLE table

column_definition_list

[table_constraint_definition_list];

The definition of a table column is done as follows:

column {datatype | domain}

[default {literal | system_function | null }]

[column_construct_definition_list]

The constraints that can be defined over the columns are the following:
• not null: not null value constraint.
• Constraint definition for single column PK, Uni, FK.
• General constraint definition with the check clause.

8

2.5.1.3.- Table Definition (SQL).

The clause for defining table constraints is the following one:

[constraint constraint]
{ primary key (column_list)

| unique (column_list)
| foreign key (column_list)

references table[(column_list)]
[match {full | partial}]
[on update [cascade |

set null | set default | no action]]
[on delete [cascade |

set null | set default | no action]]
| check conditional_expression }

[constraint_check]
- Must be TRUE or UNDEFINED.
- Cannot include subqueries or references to other tables.

* NOT IN ORACLE

* NOT IN ORACLE

* NOT IN ORACLE

* NOT IN ORACLE

Default value: the operation is not allowed

9

2.5.1.3.- Example: Provider-Piece-Supply

piece_code_d: string(4)
id_d: integer (positive)
Provider(id: id_d, name: string(40), address: string(25), city: string(30))

PK: {id}
NNV: {name}

Piece(code: piece_code_d, desc: string(40), colour: string(20), weight: real)
PK: {code}

Supply (id: id_d, code: piece_code_d, price: real)
PK: {id, code}
FK: {id} → Provider
FK: {code} → Piece

Integrity constraints:
R1) Px: Piece ∀Px: Piece (Px.colour=’red’ → Px.weight>100)

R2) Px: Piece, Sx: Supply ∀Px: Piece (∃Sx: Supply (Sx.code=Px.code))

10

2.5.1.3.- Example: Provider-Pieces-Supply
(SQL)

create schema Store
authorization Joe
create domain piece_code_d as char(4)
create domain id_d as integer check value>0
create table Provider (id id_d primary key,

name varchar(40) not null,
address char(25),
city char(30))

create table Piece (code piece_code_d primary key,
desc varchar(40),
colour char(20),
weight float,

constraint r1 check (colour<>’red’ or weight>100))
create table Supply (id id_d,

code piece_code_d references Piece,
price float,

primary key (id, code),
foreign key (id) references Provider(id));

⇐ R1

and R2?

11

2.5.1.3.- Table Definition (SQL). MATCH

R(FK) S(UK)

• complete (match full): in a tuple of R all the values must have a null value or
none of them. In the latter case, there must exist a tuple in S taking the same
values for the attributes in UK as the values in the attributes of FK.

• partial (match partial): if in a tuple of R one or more attributes of FK do not
have a non-null value, then there must exist a tuple in S taking the same values
for the attributes of UK as the values in the non-null attributes of FK.

• weak (the clause match is not included): if in a tuple of R all the values for the
attributes of FK have a non-null value, then there must exist a tuple in S taking
the same values for the attributes of UK as the values in the attributes of FK.

ORACLE

12

2.5.1.3.- Table Definition Modification (SQL).

In order to modify the definition of a table:

alter table base_table

{add [column] column_definition

| alter [column] column

{set default {literal | system_function | null }

| drop default}

| drop [column] column {restrict | cascade} };

To remove a table from the relational schema:

drop table base_table {restrict | cascade};

With ORACLE some things
are different

In ORACLE it is CASCADE
CONSTRAINTS

13

2.5.1.4.- Constraint definition (SQL)

create assertion constraint

check (conditional_expression)

[constraint_check];

The condition must be TRUE.

14

2.5.1.4.- Example: Provider-Pieces-Supply
(SQL)

Constraint R2 :
R2) Px: Piece, Sx: Supply ∀Px : Piece (∃Sx : Supply(Sx) (Sx.code=Px.code))

is defined through a general constraint:
create assertion R2 check
not exists(select * from Piece P

where not exists(select *
from Supply S
where P.code=S.code));

Removal of a constraint

DROP ASSERTION constraint

15

• SQL, as a data manipulation language, incorporates:

The SELECT query command: integrates the logical and
algebraic approaches.

The commands for data modification: INSERT, DELETE
and UPDATE.

2.5.2.- SQL as a data manipulation language

16

• Allows information retrieval from the database

• Syntax:

5 select [all | distinct] selected_item_list | *

1 from table

2 [where conditional_expression]

3 [group by column_list]

4 [having conditional_expression]

6 [order by column_reference_list]

2.5.2.1- The SELECT command

SELECT

17

2.5.2.1- The SELECT command

3 select R1X.A, R2X.B, , RnX.AA

1 from R1 [AS] R1X, R2 [AS] R2X, , Rn [AS] RnX

2 [where F(R1X, R2X, ..., RnX)]

being:

• R1, R2, .., Rn are relations.

• A, B, ..., AA are attributes from the previous relations.

• R1X, R2X, ..., RnX are alternative names (alias).

• F(R1X, R2X, ..., RnX) is a condition.

The result is a relation which is composed of the attributes A, B, ..., AA of the
tuples in the relations R1, R2, ..., Rn for which F is true.

18

• In order to rename tables and attributes in SQL we use the reserved word AS.
• It allows the renaming of a relation as well as of all its attributes (the original

relation definition does not change, it only changes for the SELECT
command)

Examples:
Player(name: varchar, age: number, country: varchar)

Player AS Competitor
Player AS T(na, ag, co)

2.5.2.1- The SELECT command.

RENAME

Renames the Player relation
Renames the Player relation and all its attributes.

19

• The reserved word AS is optional.
• In case a query refers two or more times to the same table, renaming is

indispensable.

Example:
Player(id: number, name: varchar, age: number, country: varchar)

PK:{id}

List the pairs of players’ names who are from the same country:

2.5.2.1- The SELECT command.

AS (Cntd.)

Select J1.name, J2.name
from Player AS J1, Player AS J2
where J1.country = J2.country and J1.id < J2.id;

Select J1.name, J2.name
from Player J1, Player J2
where J1.country = J2.country and J1.id < J2.id;

RENAME (Cont)

20

2.5.2.1- The SELECT command: Logical
approach.

3 select R1X.A, R2X.B, , RnX.AA

1 from R1 [AS] R1X, R2 [AS] R2X, , Rn [AS] RnX

2 [where F(R1X, R2X, ..., RnX)]

where:

• In the SELECT clause, we indicate the attributes we want to retrieve.

• In the FROM part, we declare the tuple variables.

• WHERE is a logical formula in which the only free variables are those
declared in the FROM part.

• The formula in the WHERE clause is constructed by using a syntax which is
very close to a first order logic language.

21

FORMALISATION (SYNTAX):
FORMULAS IN THE CLAUSE ‘WHERE’.

A condition is an expression that can be:
• IS NULL (RX.Ai)
• RX.Ai α SX.Aj
• RX.Ai α a

where:
– α is a comparison operator (<, >, ≤, ≥, =, <>).
– Ai and Aj are attribute names of the relations over which we have defined

variables RX and SX.
– a is a value in the domain associated with the attribute RX.Ai (except

null).

2.5.2.1- The SELECT command: Logical
approach.

22

Formulas are constructed by applying the following rules:

• Every condition is a formula.

• If F is a formula, the (F) and NOT F are formulas.

• If F and G are formulas, then F OR G, F AND G are also formulas.

• If S is a SELECT command, then EXISTS(S) is a formula.

• Nothing more is a formula.

2.5.2.1- The SELECT command: Logical
approach.

23

2.5.2.1- The SELECT command: Logical
approach.
3 select R1X.A, R2X.B, , RnX.AA

1 from R1 [AS] R1X, R2 [AS] R2X, , Rn [AS] RnX

2 [where F(R1X, R2X, ..., RnX)]

The SELECT command returns a relation in which each tuple in the relation is
formed by the attribute values R1X.A, R2X.B, , RnX.AA such that:

• These values appear in the variables R1X, R2X, ..., RnX.

• Hence, these values appear in the extensions of the relations R1, R2, ..., Rn.

• These values make the formula F(R1X, R2X, ..., RnX) true.

24

FORMULA EVALUATION (SEMANTICS).

Truth value for a condition:

• If F is of the form RX.Ai α SX.Aj then F is evaluated to undefined if at least
an attribute Ai or Aj has null value in the tuple which is assigned to RX or to
SX, otherwise it is evaluated to the truth value of the condition.

• If F is of the form RX.Ai α a then F is evaluated to undefined if Ai has null
value in the tuple which is assigned to RX, otherwise it is evaluated to the
truth value of the comparison.

• If F is of the form IS NULL(RX.Ai) then F is evaluated to true if Ai has null
value for the tuple which is assigned to RX, otherwise it is evaluated to false.

2.5.2.1- The SELECT command: Logical
approach.

25

Truth value of a formula:

1) Let F be a condition, then its truth value is the truth value of the condition.

2) If F is of the form (G), then F is evaluated to the truth value of G.

3) If F is any of the following forms NOT G, G AND H or G OR H where G
and H are formulas, then F is evaluated according to the following truth
tables:

2.5.2.1- The SELECT command: Logical
approach.

26

G H F =G AND H F = G OR H G F = NOT G

false false false False false true

undefined false false undefined undefined undefined

true false false true true false

false undefined false undefined

undefined undefined undefined undefined

true undefined undefined true

false true false true

undefined true undefined true

true true true true

2.5.2.1- The SELECT command: Logical
approach.

27

4) If F is of the form:

EXISTS(select *

from R1 [AS] R1X, R2 [AS] R2X, , Rn [AS] RnX

[where G(R1X, R2X, ..., RnX)])

• Then F is evaluated to true if there exist some values for the variables R1X,
..., RnX in the extensions of R1, ..., Rn for which G is evaluated to true.

• Otherwise it is evaluated to false.

2.5.2.1- The SELECT command: Logical
approach.

28

2.5.2.1- The SELECT command: Logical
approach.
Example:

RIVER(rcode:rcode_dom, name:name_dom)
PROVINCE(pcode:pcode_dom, name:name_dom)
CROSSES(pcode:pcode_dom, rcode:rcode_dom)

Query1: “Provinces that are crossed by the river with code r1”.

First Order Logic:

Tuple variables:

SELECT clause:

PROVINCE(x,y) ^ CROSSES(x, ‘r1’)

PX:PROVINCE | ∃PPX:CROSSES (PPX.pcode = PX.pcode ^ PPX.rcode = ‘r1’)

SELECT *
FROM PROVINCE PX
WHERE EXISTS(SELECT *

FROM CROSSES PPX
WHERE PPX.pcode = PX.pcode AND PPX.rcode = ‘r1’)

SELECT PX.pcode, PX.name
FROM PROVINCE PX, CROSSES PPX
WHERE PPX.pcode = PX.pcode AND PPX.rcode = ‘r1’

29

2.5.2.1- The SELECT command: Logical
approach.
Example:

RIVER(rcode:rcode_dom, name:name_dom)
PROVINCE(pcode:pcode_dom, name:name_dom)
CROSSES(pcode:pcode_dom, rcode:rcode_dom)

Query2: “Provinces which are crossed by no river”.

First Order Logic:

Tuple variables:

SELECT clause:

PROVINCE(x,y) ^ ¬∃z CROSSES(x, z)

PX:PROVINCE | ¬∃PPX:CROSSES (PPX.pcode = PX.pcode)

SELECT *
FROM PROVINCE PX
WHERE NOT EXISTS(SELECT *

FROM CROSSES PPX
WHERE PPX.pcode = PX.pcode)

30

2.5.2.1- The SELECT command: Logical
approach.

Syntax of the existential quantifier in SQL:
EXISTS(SELECT *

FROM R1 R1X, R2 R2X, ..., Rn RnX
WHERE F(R1X, R2X, ..., RnX))

• is equivalent to the formula ∃R1X:R1(∃R2X:R2 ...(∃RnX:Rn (F(R1X, R2X, ...,
RnX))...)

• In SQL there is no universal quantifier; we must use the existential quantifier
in its place through the conversion:

∀x F(x) ≡ ¬∃x (¬ F(x))

31

2.5.2.1- The SELECT command: Logical
approach.
Example:

RIVER(rcode:rcode_dom, name:name_dom)
PROVINCE(pcode:pcode_dom, name:name_dom)
CROSSES(pcode:pcode_dom, rcode:rcode_dom)

Query3: “List the rivers which cross all the provinces”.

Tuple variables:

SELECT clause:

RX:RIVER|∀PX:PROVINCE (∃PPX:CROSSES (PPX.pcode=PX.pcode ^
PPX.rcode=RX.rcode))
RX:RIVER|¬∃PX:PROVINCE (¬∃PPX:CROSSES (PPX.pcode=PX.pcode ^
PPX.rcode=RX.rcode)

SELECT * FROM RIVER RX
WHERE NOT EXISTS (SELECT * FROM PROVINCE PX

WHERE NOT EXISTS(SELECT * FROM CROSSES PPX
WHERE PPX.pcode = PX.pcode AND

PPX.rcode = RX.rcode))

32

• Connects the content of two relations (or two query results) in a single table.
• In order to execute the UNION operator correctly, we require that both

relations are compatible.

Example:
Cook(name: varchar, age: number, country: varchar)
Waiter(name: varchar, age: number, country: varchar)

List the adult workers in the restaurant:

UNION

Select name from Cook where age >= 18
UNION
Select name from Waiter where age >= 18;

2.5.2.1- The SELECT command: Algebraic
approach.

33

• The reserved word in SQL to perform a difference between relations is
EXCEPT.

• In order to execute the EXCEPT operator correctly, we require that both
relations are compatible.

Example:
Cook(name: varchar, age: number, country: varchar)
Waiter(name: varchar, age: number, country: varchar)

List the workers who work only as cooks in the restaurant:

DIFFERENCE

1. Select * from (Cook except Waiter)
2. Cook except Waiter

2.5.2.1- The SELECT command: Algebraic
approach.

34

• The reserved word in SQL to perform an intersection between relations is
INTERSECT.

• In order to execute the INTERSECT operator correctly, we require that both
relations are compatible.

Example:
Cook(name: varchar, age: number, country: varchar)
Waiter(name: varchar, age: number, country: varchar)

List the workers who work as cooks and waiters in the restaurant:

INTERSECTION

1. Select * from (Cook intersect Waiter)
2. Cook intersect Waiter

2.5.2.1- The SELECT command: Algebraic
approach.

35

• In order to execute the Cartesian product correctly, we require that both
relations have different attribute names.

• In SQL the Cartesian product is just computed by adding both relations,
separated by commas, in the FROM clause.

Example:
Team1(name: varchar, age: number, country: varchar)
Team2(name: varchar, age: number, country: varchar)

List all the possible combinations from players of Team 1 and players from
Team 2:

List pairs of players from Team1 who are from the same country:

CARTESIAN PRODUCT

Select * from Team1, Team2
Select * from Team 1 CROSS JOIN Team2

Select * from Team1 e1, Team1 e2 where e1.country = e2.country and e1.age < e2.age

2.5.2.1- The SELECT command: Algebraic
approach.

36

• In order to project several attributes we just write the name of the attributes
we want to retrieve after the SELECT clause, separated by commas.

• The attributes can be renamed using the AS clause.

Example:
Cook(name: varchar, age: number, country: varchar)

List the name of the cooks in the restaurant:

PROJECTION

Select name from Cook

2.5.2.1- The SELECT command: Algebraic
approach.

37

• There are several variants corresponding to the JOIN operator of the Relational
Algebra.

• There are two main kinds of JOIN in SQL: inner and outer.

• INNER JOIN:

table_reference [natural] [inner] join table_reference
[on conditional_expression | using (column_list)]

• OUTER JOIN:

table_reference [natural]
{left [outer] | right [outer] | full [outer]} JOIN table_reference

[on conditional_expression | using (column_list)]

JOIN

2.5.2.1- The SELECT command: Algebraic
approach.

38

Examples: INNER JOIN.

table_reference [natural] [inner] join table_reference
[on conditional_expression | using (column_list)]

PERSON(id: id_dom, name: name_dom, age: age_dom)

HOUSE(house_code: code_dom, owner: id_dom, addr: addr_dom, rooms: number)

• Obtain a list with the houses and associated with its owner :

JOIN (Cntd.)

1. PERSON inner join HOUSE on PERSON.id = HOUSE.owner
2. PERSON natural inner join HOUSE AS V(cv, id, addr, nh)
3. SELECT * FROM PERSON, HOUSE WHERE id = owner

2.5.2.1- The SELECT command: Algebraic
approach.

39

Examples: OUTER JOIN.
table_reference [natural]
{left [outer] | right [outer] | full [outer]} JOIN table_reference

[on conditional_expression | using (column_list)]
PERSON(id: id_dom, name: name_dom, age: age_dom)
HOUSE(house_code: code_dom, owner: id_dom, addr: addr_dom, rooms: number)

• Obtain a list with every house and, in case it has an owner, associated with its owner.
Get also a list with every person. Another with every house and owner:

JOIN (Cntd.)

1. PERSON natural right join HOUSE
2. PERSON natural left join HOUSE
3. PERSON natural full join HOUSE

All the houses appear
All the owners appear
All the houses and owners appear

2.5.2.1- The SELECT command: Algebraic
approach.

40

select t1.*, null, null, ..., null from t1

union all

select null, null, ..., null, t2.* from t2

... FROM T1 UNION JOIN T2 ≡ ... FROM

• JOIN UNION

JOIN (Cntd.)

2.5.2.1- The SELECT command: Algebraic
approach.

41

• The expression of the Relational Algebra:
R WHERE F(Ai, Aj, Ak,)

is equivalent to the expression in SQL:
SELECT * FROM R WHERE F(R.Ai, R.Aj, R.Ak, ...)

• In case we include several relations in the FROM clause in a SELECT:
SELECT * FROM R1, R2, ..., Rn WHERE F(R1.Ai, ..., Rn.Zk)

Its equivalent in Relational Algebra would be:
R1 × R2 × ... × Rn WHERE F (R1.Ai, ..., Rn.Zk)

2.5.2.1- The SELECT command: Algebraic
approach.

SELECTION

42

2.5.2.1- The SELECT command: Algebraic
approach.

Operator RELATIONAL
ALGEBRA

SQL

SELECTION R WHERE F SELECT ... FROM R WHERE F

PROJECTION R [Ai , Aj ..., Ak] SELECT Ai , Aj ..., Ak FROM R

CARTESIAN
PRODUCT

R1 × R2, ... × Rn
SELECT ... FROM R1, R2, ..., Rn, o
SELECT...FROM R1 CROSS JOIN R2, ..., CROSS JOIN Rn

JOIN R1 R2 SELECT... FROM R1 NATURAL JOIN R2

UNION R1 ∪ R2
SELECT * FROM R1 UNION SELECT * FROM R2

DIFFERENCE R1 − R2 SELECT * FROM R1 EXCEPT SELECT * FROM R2

INTERSECTION R1 ∩ R2
SELECT * FROM R1 INTERSECT SELECT * FROM R2

43

2.5.2.1- The SELECT command: Algebraic
approach.
Example:

RIVER(rcode: rcode_dom, name: name_dom)
PROVINCE(pcode: pcode_dom, name: name_dom)
CROSSES(pcode: pcode_dom, rcode: rcode_dom)

Query2: “Provinces which are crossed by no river”.
Relational Algebra:

SQL:

PROVINCE[pcode, name] – (PROVINCE CROSSES)[pcode, name]

SELECT pcode, name FROM PROVINCE

EXCEPT

SELECT pcode, name FROM PROVINCE NATURAL JOIN CROSSES

D1

Diapositiva 43

D1 DSIC; 19/04/2005

44

2.5.2.2- SQL as a data manipulation language:
modification.

• DML can also insert one or more tuples in a relation.

• The syntax is:

insert into table [(column_list)]

{ default values | values (atom_list) | table_expression}

• If we do not include the column list the complete rows will be inserted into
table.

INSERT

45

Cook(name: varchar, age: number, country: varchar)

.

.

.

.

.

.

.

.

.

countryagename

INSERT INTO Cook

VALUES (“Carmelo Cotón”, 27, “France”);

2.5.2.2- SQL as a data manipulation language:
modification.

46

Cook(name: varchar, age: number, country: varchar)

INSERT INTO Cook

VALUES (“Carmelo Cotón”, 27, “France”);

.

.

.

.

.

.

.

.

.

France27Carmelo Cotón
.
.
.

.

.

.

.

.

.

countryagename

2.5.2.2- SQL as a data manipulation language:
modification.

47

Cook(name: varchar, age: number, country: varchar)

.

.

.

.

.

.

.

.

.

countryagename

INSERT INTO Cook(age, name)

VALUES (27, “Carmelo Cotón”);

2.5.2.2- SQL as a data manipulation language:
modification.

48

Cook(name: varchar, age: number, country: varchar)

INSERT INTO Cook(age, name)

VALUES (27, “Carmelo Cotón”);

.

.

.

.

.

.

.

.

.

?27Carmelo Cotón
.
.
.

.

.

.

.

.

.

countryagename

2.5.2.2- SQL as a data manipulation language:
modification.

49

• If we include the default values option a single row will be inserted with the
values by default which are appropriate for each column (according to the
definition of table).

• In the option values(atom_list), the atoms are given by scalar expressions.

• In the option table_expression, we insert the resulting rows of the execution
of the expression (SELECT).

insert into table [(column_list)]

{ default values | values (atom_list) | table_expression}

• If we do not include the column list the complete rows will be inserted into
table.

2.5.2.2- SQL as a data manipulation language:
modification.

50

COOK(name: varchar, age: number, country: varchar)

PERSON(name: varchar, age: number)

.

.

.

.

.

.

.

.

.

countryagename

INSERT INTO COOK(name, age)

SELECT name, age

FROM PERSON

WHERE age > 20;

26Soledad

19Antonio

22Paco

agename

2.5.2.2- SQL as a data manipulation language:
modification.

51

?22Paco

.

.

.

.

.

.

.

.

.

?26Soledad
.
.
.

.

.

.

.

.

.

countryagename

Cook(name: varchar, age: number, country: varchar)

INSERT INTO Cook(name, age)

SELECT name, age

FROM PERSON

WHERE age > 20;

2.5.2.2- SQL as a data manipulation language:
modification.

52

• Can modify the values of the attributes of one or more selected tuples.

• The syntax is:

update table

set assignment_list

[where conditional_expression]

Where an assignment is of the form:

column = {default | null | scalar_expression}

UPDATE

2.5.2.2- SQL as a data manipulation language:
modification.

53

• If we include the clause ‘where’ the modification will only be applied to the
rows which make the condition true.

Example: Decrement by 1 the age of the French cooks.

UPDATE Cook SET age = age - 1

WHERE country = “France” ;

2.5.2.2- SQL as a data manipulation language:
modification.

54

• Removes one or more tuples from a relation.
• The syntax is:

DELETE FROM table [WHERE conditional_expression]

• If we include the clause ‘where’ the rows which make the condition true will
be removed.

Example: Remove all the cooks who are younger than 18.

DELETE FROM Cook WHERE age < 18;

DELETE

2.5.2.2- SQL as a data manipulation language:
modification.

55

2.6.1.- Notion of view.

• A view is a virtual table which is derived from other tables (base or
virtual).

• Features of a view:

– It is considered part of the external schema.

– A view is a virtual table (it doesn’t have any correspondence
at the physical level).

– Can be queried like any other base table.

– Updates are transferred to the original tables (with some
limitations).

56

2.6.2.- Applications of views.
• To specify tables with information which is accessed frequently but which

does not have a physical correspondence:
– Derived information from several tables.
– Derived information from the aggregation of tuples (group by), such

as statistics.
– In general: derived information obtained by complex queries which

are accessed frequently.

• As a privacy mechanism: definition of views only with the table attributes the
author can have access to.

• To create external schemas.

57

• The syntax for the definition of views in SQL is as follows:

CREATE | REPLACE VIEW view [(column_list)]

AS table_expression [with check option]

where:

2.6.3.- Views in SQL.

– CREATE VIEW is the command.

– view is the name of the virtual table which is being defined.

– (column_list) are the names of the table attributes (it is optional):

• If not specified, name coincides with the names of the attributes which
return the table_expression.

• It is compulsory if some attribute in table_expression is the result of an
aggregation function or an arithmetic expression.

58

• The syntax for the creation of views in SQL is as follows:

CREATE | REPLACE VIEW view [(column_list)]

AS table_expression [with check option]

where:

2.6.3.- Views in SQL.

– table_expression is a SQL query whose result will include the content of the view.

– WITH CHECK OPTION is optional and must be included if the view is to be
updated in an appropriate way.

– To remove a view we use the command:

– DROP VIEW view [restrict | cascade];

59

2.6.3.- Views in SQL (Examples).

• Given the following database relation:

Cook(name: varchar, age: number, country: varchar)

Define a view with only the French cooks:

Define a view with the average age of the cooks grouped by country:

Check Option ensures that cooks who are
not French cannot be added to the viewCREATE VIEW French AS

SELECT * FROM Cook WHERE country = “France”
WITH CHECK OPTION

CREATE VIEW Report(country, avg_age) AS
SELECT country, AVG(age) FROM Cook GROUP BY country

Reasons why a view is NOT updatable:

• It contains set operators (UNION, INTERSECT,…).

• It contains the DISTINCT operator

• It contains aggregated functions (SUM, AVG, ..)

• It contains the clause GROUP BY

2.6.3.- Views in SQL (updatable views).

View over a base table:

• The system will translate the update over the view to the corresponding
action to the base relation.

• Provided that no integrity constraint defined on the relation is violated.

2.6.3.- Views in SQL (updatable views).

View over a join of two relations:

• The update can only modify one of the two base tables.

• The update will modify the base relation which complies with the property of
key preservation (the table whose primary key could also be the primary key of
the view).

• Provided that no integrity constraint defined on the affected relation is
violated.

2.6.3.- Views in SQL (updatable views).

63

Example:

• Given the following relations:

PERSON(id: id_dom, name: name_dom, age: age_dom)
PK:{id}

HOUSE(house_code: code_dom, id: id_dom, addr: addr_dom, rooms: number)
PK:{house_code} FK:{id} PERSON

• Given the following view which is defined over these relations:
CREATE VIEW ALL_HOUSE AS
SELECT * FROM PERSON NATURAL JOIN HOUSE

Can we modify the address of a house in ALL_HOUSE?

Can we modify the name of the HOUSE owner?

2.6.3.- Views in SQL (updatable views).

Yes, the PK in HOUSE could work as the PK in ALL_HOUSE

No, the update is ambiguous

64

2.7.1.- Notion of trigger.

A trigger is a rule which is automatically activated by
certain events and executes a particular action.

65

Form of an activity rule:

event - condition - action

action which the system executes as a response of the happening of an
event when a certain condition is met:

• event: update operation

• condition: logical expression in SQL. The action will only be
executed if this condition is true. If the condition is not specified,
the condition is assumed to be true.

• action: a procedure written in a programming language which
include manipulation instructions to the DB.

2.7.2.- Event-condition-action rules.

66

Define the active behaviour of a database system:

• Check of general integrity constraints

• Restoration of consistency

• Definition of operational rules in the organisation

• Maintenance of derived information

2.7.3.- Applications of triggers.

67

Rule definition::=
{CREATE | REPLACE} TRIGGER rule_name
{BEFORE | AFTER | INSTEAD OF} event [events_disjunction]

ON {relation_name | view_name}
[[REFERENCING OLD AS reference_name

[NEW AS reference_name]]
[FOR EACH {ROW | STATEMENT} [WHEN (condition)]]
PL/SQL block

events_disjunction ::= OR event [events_disjunction]

event ::= INSERT | DELETE | UPDATE [OF attribute_name_list]

2.7.4.- Triggers in SQL.

68

Events:

{BEFORE | AFTER | INSTEAD OF} event [events_disjunction]
ON {relation_name | view_name}

events_disjunction ::= OR event [events_disjunction]

event ::=
INSERT | DELETE | UPDATE [OF attribute_name_list]

2.7.4.- Triggers in SQL.

69

Events:

Event parameterisation:
– The events in the rules defined with FOR EACH ROW are parameterised
– Implicit parameterisation:

• event INSERT or DELETE: n (n being the degree of the relation)
• event UPDATE: 2*n

– Name of the parameters:
• event INSERT: NEW
• event DELETE: OLD
• event UPDATE: OLD and NEW

– They can be used in the condition of the rule
– They can be used in the PL/SQL block

2.7.4.- Triggers in SQL.

70

BEFORE

FOR EACH STATEMENT FOR EACH ROW

The rule is executed once before the
execution of the update operation

The rule is executed once before the
update of each tuple which is affected
by the update operation

AFTER

The rule is executed once after the
execution of the update operation

The rule is executed once after the
update of each tuple which is affected
by the update operation

2.7.4.- Triggers in SQL.

71

CONDITIONS

WHEN (condition)

– Logical expression with a similar syntax as the condition of the ‘WHERE’
clause of the SELECT instruction

– It cannot contain queries or aggregated functions

– It can only refer to the parameters in the event

2.7.4.- Triggers in SQL.

72

ACTIONS

PL/SQL block

– block written in the programming language Oracle PL/SQL
– Manipulation statements over the DB: INSERT, DELETE, UPDATE,

SELECT ... INTO ...
– Program statements: assignment, selection, iteration
– Error handling statements
– Input/output statements

2.7.4.- Triggers in SQL.

73

Rule language:
– Definition: CREATE TRIGGER rule_name ...

– Removal: DROP TRIGGER rule_names

– Modification: REPLACE TRIGGER rule_name ...

– Recompilation: ALTER TRIGGER rule_name COMPILE

– Disable/enable rule: ALTER TRIGGER rule_name [ENABLE | DISABLE]

– Disable/enable all the rules defined over a relation:

ALTER TABLE relation_name [{ENABLE | DISABLE} ALL TRIGGERS]

2.7.4.- Triggers in SQL.

74

The constraint R2 such as this
R2) Px: Piece, Sx: Supply ∀Px : Piece (∃Sx : Supply (Sx.code=Px.code))

can be defined through the following assertion:
create assertion R2 check
not exists (select * from Piece P

where not exists (select *
from Supply S
where P.code=S.code));

How can this constraint be controlled through triggers?

2.7.4.- Triggers in SQL (Example).

75

We must detect the events which might affect the I.C. :

table, operation, attribute
Supply, Deletion, -
Supply, Update, code
Piece, Insertion, -

Then we must define triggers to control these events.

2.7.4.- Triggers in SQL (Example).

76

CREATE TRIGGER T1
AFTER DELETE ON Supply OR UPDATE OF code ON Supply
FOR EACH ROW
DECLARE

N: NUMBER;
BEGIN

SELECT COUNT(*) INTO N
FROM Supply S
WHERE :old.code = S.code;

IF N=0 THEN
RAISE_APPLICATION_ERROR(-20000, ‘We can’t delete this supply,
otherwise the piece would remain without supplies.’);

END IF;
END;

2.7.4.- Triggers in SQL (Example).

77

CREATE TRIGGER T2
AFTER INSERT ON Piece
FOR EACH ROW
DECLARE N: NUMBER;
BEGIN

SELECT COUNT(*) INTO N
FROM Supply S WHERE :new.code = S.code;

IF N=0 THEN
RAISE_APPLICATION_ERROR(-20000, ‘We cannot

insert a new piece, because this piece has no supplies.
Insert the two tuples (piece and supply)
inside a transaction by disabling this trigger first.’);

END IF;
END;

2.7.4.- Triggers in SQL (Example).

78

2.8.- Limitations of the relational model.

• The traditional data model (relational, hierarchical and network) has had
great success in traditional business and transactional applications.

• Traditional models present deficiencies in six applications:
Design and manufacturing in engineering (CAD/CAM/CIM),
Scientific experiments,
Telecommunications,
Geographical Information Systems,
Multimedia, and
Strategic data warehouses.

79

2.8.- Limitations of the relational model.

• Requirements and characteristics for the new applications:
More complex structures for the objects in the database,
Longer transactions,
New datatypes needed to store images or big text/binary blocks, and
Need for defining specific (non standard) operations for the
applications.

• Evolution of relational databases:
Deductive databases,
Active databases,
Object-oriented databases
Object-relational databases (SQL3)
Multidimensional databases.

