
1

UNIT II

The Relational Data Model

2

The Relational Data Model

Objectives:

– To know the data structures of the relational model: the tuple and the
relation, as well as their associated operators.

– To know (basically) how to model the reality using the relational model.
– To be familiar with the algebraic approach for manipulating a database, as

well as the logical perspective.
– To know the mechanisms of the relational model needed to express

integrity constraints: domain definition and key definition.
– To know additional mechanisms to define constraints and express activity

in databases: triggers.

3

The Relational Data Model

Syllabus:

Introduction
2.1.- The relational data model (algebraic approach).

2.1.1.- Structures: tuple and relation.
2.1.2.- Relational Schema: representation of reality.
2.1.3.- Operators on relations: relational algebra

2.2.- Relational schema: representation of reality
2.3.- The relational data model (logical approach).

2.3.1.- Logic and databases
2.3.2.- Logical interpretation of a relational database.

4

The Relational Data Model

Syllabus: (cont’d.):

2.4.- Integrity constraints.
2.4.1.- Constraints over attributes: domain and not null.
2.4.2.- Uniqueness constraints.
2.4.3.- Notion of primary key. Primary key constraint.
2.4.4.- Referential integrity: Foreign key constraint.
2.4.5.- Referential triggered action: action directives.
2.4.6.- Other mechanisms to represent integrity constraints.

5

The Relational Data Model

Syllabus: (cont’d.):
2.5.- SQL – The Relational Database Standard.

2.5.1.- The Data Definition Language (DDL).

2.5.2.- The Data Manipulation Language (DML).

2.5.2.1 INSERT, DELETE and UPDATE.

2.5.2.2 Logical approach in the SELECT clause.

2.5.2.3 Algebraic approach in the SELECT clause

2.6.- Derived information: views

2.6.1.- Notion of view.

2.6.2.- Applications.

2.6.3.- Views in SQL.

6

The Relational Data Model

Syllabus: (cont’d.):

2.7.- Activity mechanisms: triggers.

2.7.1.- Notion of trigger.

2.7.2.- Event-Condition-Action (ECA) rules

2.7.3.- Applications

2.7.4.- Triggers in SQL.

2.8.- Evolution of the relational model

7

2.- Introduction to the Relational Data Model

• Historical milestones about the Relational Data Model
(RDM):

– 70’s: Proposed by E. Codd in 1970

– 80’s: Becomes popular in practice (Oracle, ...). ANSI
defines the SQL standard.

– 90’s: Generalisation and standardisation (SQL’92)
and extensions.

Reasons of success:

Simplicity: a database is a “set of tables”.

8

2.- The RDM: Components and Approaches

RDM = Data structures + Associated operators

• domains

• attributes

• the tuple

• the relation.

Common data structures:

Two Operator Families:

Algebraic Logical

R.A. T.R.C D.R.C.

9

2.- The RDM: Terminology

Common Terminology
(computing)

• data types

• fields / columns

• record / row

• table

RDM Terminology
(mathematical)

• domains

• attributes

• tuple

• relation

Data structures:

They are not exactly equivalent

10

2.1.- The RDM: Algebraic Approach

• The algebraic approach sees tables as sets, and the set of
operators working with them as an algebra.

Algebraic Logical

R.A. T.R.C D.R.C.

11

2.1.1.- Notion of tuple

Tuple schema:

A tuple schema, τ, is a set of pairs of the form:
τ = {(A1, D1), (A2, D2),…, (An, Dn)}

where:

{A1, A2, …, An} (n > 0) is the set of attribute names in
the schema, necessarily different.

D1, D2 …, Dn are the domains associated with the above-
mentioned attributes, which not necessarily have to be
different.

12

2.1.1.- Notion of tuple

Example of tuple schema:

Person = {(person_id, integer), (name, string), (address, string)}

where:

{ person_id, name, address } is the set of attribute names in the
schema.

integer, string, string are the domains which are associated with
the attributes.

13

2.1.1.- Notion of tuple

Tuple:

A tuple, t, of tuple schema τ where

τ = {(A1, D1), (A2, D2),…, (An, Dn)}

is a set of pairs of the form:

t = {(A1, v1), (A2, v2),…, (An, vn)}

such that ∀i vi ∈ Di.

14

2.1.1.- Notion of tuple

Examples of Tuple:

Given the following tuple schema:

Person = {(person_id, integer), (name, string), (address, string)}

We have:
t1 = {(person_id, 2544), (name, “Joan Roig”), (address, “Sueca 15”)}

t2 = {(person_id, “2844F”), (name, “R3PO”), (address, “46022”)}

t3 = { (name, “Pep Blau”), (person_id, 9525), (address, “dunno!”)}

15

2.1.1.- Domains

A Domain is something more than a datatype:

What happens if we don’t know the value a
tuple takes in some of its attributes?PROBLEM:

Solution in Programming Languages: use of special or extreme values
(-1, “Empty”, “ ”, “We don’t know”, 0, “No address”, “---”, ...)

Solution in the Relational Model: NULL VALUE (?)

A domain is a set of elements which always
includes the NULL value.

16

2.1.1.- Tuple Operators

Given tuple: t = {(A1, v1), …, (Ai, vi), …, (An, vn)}

GET:

• GET(t, Ai) = vi

SET:

• SET(t, Ai, wi) = {(A1, v1), …, (Ai, wi), …, (An, vn)}

Usual notation

• GET(t, Ai): t.Ai t(Ai)

• SET(t, Ai, wi): t.Ai ← wi t(Ai) ← wi

17

2.1.1.- Example
Given the domain: id_dom: integer

name_dom, add_dom: string(20)
Tuple schema:

Person = {(person_id, id_dom), (name, name_dom), (address, add_dom)}
Tuples:

t1 = {(person_id, 12345678), (name, “Pepa Gómez”), (address, “Paz 10”)}
t2 = { (name, “Pep Blau”), (person_id, 9525869), (address, ?) }

Operations:

“Pepa Gómez”GET(t1, name) =

SET (t1, address, “Colón 15”) = {(person_id, 12.345.678), (name, “Pepa
Gómez”), (address, “Colón 15”)}

GET (t2, address) = ?

We say that t2.address is null, not that t2.address = null.

18

2.1.1.- Notion of relation (algebraic)

Relation:

A relation is a set of tuples of the same schema.

Relation schema

A relation schema is the schema of the tuples composing the
relation.

Notation

R(A1: D1, A2: D2,…, An: Dn)

Defines a relation R of schema

{(A1, D1), (A2, D2),…, (An, Dn)}

19

2.1.1.- Properties of a relation

Properties of a relation

• Degree of a relation: number of attributes of its schema

• Cardinality of a relation: number of tuples that compose the
relation.

• Compatibility: two relations R and S are compatible if their
schemas are identical.

20

2.1.1.- Example of relation

Example:

A relation of the PERSON schema might be as follows:
{{(person_id, 1234), (name, “Pepa Gómez”), (address, “Colón 15”)},
{ (person_id, 2045), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “José Abad”), (person_id, 1290), (address, “Blasco Ibáñez 35)},
{ (name, “María Gutiérrez”), (person_id, 35.784.843) (address, “Reina 7”)}}

Degree:
Cardinality:

Compatible with:

21

2.1.1.- Representation of a relation

Example: PERSON relation

Representation of a relation → TABLE
• tuples are represented as rows
• attributes give name to the column headers

Person_id Name Address
2045 Juan Pérez Cuenca 20

1290 José Abad Blasco Ibáñez 35
3578 María Gutiérrez Reina 7

1234 Pepa Gómez Colón 15

Row ≈
Tuple

Column ≈ Attribute

22

2.1.1.- Difference Relation - Table

The Table is only a Matrix Representation of a Relation

TRAITS WHICH DISTINGUISH A RELATION:

(Derived from the definition of relation as a set of sets)

• There can’t be repeated tuples in a relation (a relation is a set).

• There isn’t a top-down order in the tuples (a relation is a set).

• There isn’t a left-to-right order in the attributes of a relation (a tuple
is a set). The name of the attribute must be used to choose.

23

2.1.1.- Difference Extension - Schema

EXTENSION (data)

Tuple

(Extension of a) relation : set of
tuples in a relation

Database:

set of relations

SCHEMA

Tuple schema = Relation definition

Relation Schema: set of relation
definitions which represent an

information system
Attention!: DBMSs understand a table as the definition of a relation and not as its
content, which eventually changes by applying operators.

24

2.1.1.- Relation Operators
Operators for the Relation Structure:

• INSERTION

• DELETION

• SELECTION

• PROJECTION

• UNION

• INTERSECTION

• DIFFERENCE

• CARTESIAN PRODUCT

• JOIN

Also part of the R.A.

25

2.1.1.- Insertion

Insert(R, t) = R ∪ { t }
Example:

Insert({ {(person_id, 12.345.678), (name, “Pepa Gómez”), (address, “Colón 15”)},
{ (person_id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “María Gutiérrez”), (person_id, 35.784.843) (address, “Reina 7”)} },

{ (name, “José Abad”), (person_id, 12.904.569), (address, “Blasco Ibáñez 35)})
=

{ {(person_id, 12.345.678), (name, “Pepa Gómez”), (address, “Colón 15”)},
{(person_id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (person_id, 12.904.569), (name, “José Abad”), (address, “Blasco Ibáñez 35)},
{(name, “María Gutiérrez”), (person_id, 35.784.843) (address, “Reina 7”)}}

degree:
cardinality:

Question: How does insertion affect …?:

R and t must have the same schema

26

2.1.1.- Deletion

Delete(R, t) = R − { t }
Example:

Delete({ {(person_id, 12.345.678), (name, “Pepa Gómez”), (address, “Colón 15”)},
{(person_id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (person_id, 12.904.569), (name, “José Abad”), (address, “Blasco Ibáñez 35)},
{(name, “María Gutiérrez”), (person_id, 35.784.843) (address, “Reina 7”)}}

{ (name, “José Abad”), (person_id, 12.904.569), (address, “Blasco Ibáñez 35)})
=

{ {(person_id, 12.345.678), (name, “Pepa Gómez”), (address, “Colón 15”)},
{ (person_id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “María Gutiérrez”), (person_id, 35.784.843) (address, “Reina 7”)} },

Degree:
Cardinality:

Question: How does deletion affect …?:

R and t must have the same schema

27

2.1.2.- Relational Algebra (R.A.)

R.A.: Set of unitary or binary operators which act upon relations

They are closed operators: the result of applying any R.A. operator
over one or two relations is a relation.

• Set operators:

• Properly relational operators:

• Special operator: rename

union,
intersection,
difference, and
Cartesian product.

selection,
projection,
division, and
join.

28

2.1.2.- R.A. (Rename Operator)

R((Ai, Bi),…, (Aj, Bj))

Let R be a relation of schema {(A1, D1), (A2, D2),…, (An, Dn)}. Renaming
in R the attributes Ai,…, Aj to Bi,…, Bj, denoted as R((Ai, Bi),…, (Aj, Bj)),
produces a relation which contains each tuple in R, but changing their
attribute names appropriately.

R((Ai, Bi),…, (Aj, Bj)) =

{{(A1, v1),…, (Bi, vi),…, (Bj, vj),…, (An, vn)} |

{(A1, v1),…, (Ai, vi),…, (Aj, vj),…, (An, vn)} ∈ R}

The schema of the resulting relation is the following:

{(A1, D1),…, (Bi, Di),…, (Bj, Dj),…, (An, Dn)}.

29

2.1.2.- R.A. (Rename Operator)

Example:
Consider the following schema of a relational database:

River (rcode: rcode_dom, name: name_dom)
Other_Rivers (rcode: rcode_dom, name: name_dom)
Province (pcode: pcode_dom, name: name_dom)
Crosses (pcode: pcode_dom, rcode: rcode_dom)

Question:
How would we rename the relation Crosses so that the attribute
pcode becomes ProvCode and rcode becomes RiverCode?

30

2.1.2.- R.A. (Rename Operator)

Example:
Let Crosses be a relation represented by the following table:

Crosses((pcode, ProvCode), (rcode, RiverCode)) =

Crosses
pcode rcode

44 r2
46 r2
45 r1
28 r1
16 r1

Crosses
ProvCode RiverCode

44 r2
46 r2
45 r1
28 r1
16 r1

The rename operator is applied over relations.
NOT over relation schemas

31

2.1.2.- R.A. (Set Operators)
 U nio n: R ∪ S Intersectio n: R ∩ S D ifference: R − S

a
b
c

x
y

P ro duct: R × S

× =
a
b
c
a
b
c

x
x
x
y
y
y

R

S

R R

S S

R S

32

2.1.2.- R.A. (Union Operator)

R ∪ S

Let R and S be two compatible relations with schema {(A1, D1),…, (An,
Dn)}. The union of R and S, denoted by R ∪ S, is a relation with the same
schema as R and S, and is composed of all the tuples which belong to R,
to S, or to both relations.

R ∪ S = { t | t ∈ R ∨ t ∈ S}

The union is associative and commutative

R and S must have the same schema

33

2.1.2.- R.A. (Union Operator)

Example:

pcode Name

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

∪

pcode Name

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

45 Toledo

28 Madrid

12 Castelló

=

pcode Name

16 Cuenca

45 Toledo

28 Madrid

12 Castelló

34

2.1.2.- R.A. (Difference Operator)

R − S

Let R and S be compatible relations with schema {(A1, D1),…, (An, Dn)}.
The difference between R and S, denoted by R − S, is a relation with the
same schema as R and S, and is composed by all the tuples which belong
to R and do not belong to S.

R − S = { t | t ∈ R ∧ t ∉ S}

The difference is neither associative nor commutative.

R and S must have the same schema

35

2.1.2.- R.A. (Difference Operator)

Example:

pcode Name

44 Teruel

46 Valencia

12 Castellón

−

pcode Name

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

45 Toledo

28 Madrid

12 Castelló

=

pcode Name

16 Cuenca

45 Toledo

28 Madrid

12 Castelló

36

2.1.2.- R.A. (Intersection Operator)

R ∩ S

Let R and S be two compatible relations with schema {(A1, D1),…,
(An, Dn)}. The intersection of R and S, denoted by R ∩ S, is a relation
with the same schema as R and S, and is composed by all the tuples
which belong to R and to S.

R ∩ S = { t | t ∈ R ∧ t ∈ S}

The intersection is associative and commutative.

R and S must have the same schema

37

2.1.2.- R.A. (Intersection Operator)

Example:

pcode Name

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

∩

pcode Name

16 Cuenca
=

pcode Name

16 Cuenca

45 Toledo

28 Madrid

12 Castelló

38

2.1.2.- R.A. (Cartesian Product Operator)

R × S

Let R and S be two relations with schemas {(A1, D1),…, (An, Dn)} and
{(B1, E1),…, (Bm, Em)} respectively such that they do not have any
attribute name in common. The Cartesian product of R and S, denoted by
R × S, is a relation whose schema is the union of the schemas from R and
S, and is composed by all the tuples which can be constructed by
combining one from R and one from S.

R × S = { {(A1, v1),…, (An, vn), (B1, w1),…, (Bm, wm)} |
{(A1, v1),…, (An, vn)} ∈ R and {(B1, w1),…, (Bm, wm)} ∈ S}

The schema of the resulting relation from R × S is {(A1, D1),…, (An, Dn),
(B1, E1),…, (Bm, Em)}. The Cartesian product is associative and
commutative.

R and S cannot have attribute names in common

39

2.1.2.- R.A. (Cartesian Product Operator)

Example:

pcode ProvName

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

×

pcode ProvName rcode name

44 Teruel r1 Sénia

44 Teruel r2 Túria

44 Teruel r3 Xúquer

46 Valencia r1 Sénia

46 Valencia r2 Túria

46 Valencia r3 Xúquer

16 Cuenca r1 Sénia

16 Cuenca r2 Túria

16 Cuenca r3 Xúquer

12 Castellón r1 Sénia

12 Castellón r2 Túria

12 Castellón r3 Xúquer

=

rcode name

r1 Sénia

r2 Túria

r3 Xúquer

40

2.1.2.- R.A. (Relational Operators)
 Selection

a1

a2

a3

b1

b1

b2

b1

b2

b3

c1

c2

c3

=

a1

a2

a3

b1

b1

b2

c1

c1

c2

Join

a

a

a

b

c

x

y

z

x

y

x

y
a ÷ =

Projection

Division

41

2.1.2.- R.A. (Projection Operator)

R[Ai, Aj,…, Ak]

Let R be a relation with schema {(A1, D1),…, (An, Dn)} and let {Ai, Aj,…,
Ak} be a subset of the attribute names in R with m elements (1 ≤ m ≤ n).
The projection of R over {Ai, Aj,…, Ak}, denoted by R[Ai, Aj,…, Ak], is a
relation which is defined as follows:

R[Ai, Aj,…, Ak]= {{(Ai, vi), (Aj, vj),…, (Ak, vk)} |
∃t ∈ R such that {(Ai, vi), (Aj, vj),…,(Ak, vk)} ⊆ t }

The relation schema of R[Ai, Aj,…, Ak] is

{(Ai, Di), (Aj, Dj),…,(Ak, Dk)}.

42

2.1.2.- R.A. (Projection Operator)

Example:

Let R be

person_id Name Address
20.450.120 Juan Pérez Cuenca 20

12.904.569 José Abad Blasco Ibáñez 35
35.784.843 María Gutiérrez Reina 7

12.345.678 Pepa Gómez Colón 15

person_id Address
20.450.120 Cuenca 20

12.904.569 Blasco Ibáñez 35
35.784.843 Reina 7

12.345.678 Colón 15

R[person_id, address] =

43

2.1.2.- R.A. (Join Operator)

R >< S
Let R and S be two relations with schemas {(A1, D1),…, (An, Dn), (B1,
E1),…,(Bm,Em)} and {(B1,E1),…,(Bm,Em), (C1,F1),…,(Cp,Fp)}, respectively,
in such a way that B1,…, Bm are the common attributes in both schemas.
The join of R and S, denoted by R><S, is a relation which contains all the
tuples which can be constructed by combining a tuple from R with another
from S such that they have the same value for every common attribute
name.

R >< S={{(A1, v1),…,(An, vn),(B1, w1),…,(Bm, wm), (C1, y1),…,(Cp, yp)}|
{(A1, v1),…, (An, vn), (B1, w1),…, (Bm, wm)} ∈ R ∧
{(B1, w1),…, (Bm, wm), (C1, y1),…, (Cp, yp)} ∈ S }

The join operator is associative and commutative. The resulting relation
schema is {(A1, D1),…, (An, Dn), (B1, E1),…, (Bm, Em), (C1, F1),…, (Cp, Fp)}.

44

2.1.2.- R.A. (Join Operator)

Example:

pcode name

44 Teruel

46 Valencia

16 Cuenca

12 Castellón

=

pcode rcode

44 r1

46 r2

30 r2

20 r1

44 r3

12 r1

pcode name rcode

44 Teruel r1

46 Valencia r2

44 Teruel r3

12 Castellón r1

45

2.1.2.- R.A. (Join Operator)

More examples:

pcode Name

44 Terol

46 València

16 Conca

12 Castelló

=

pcode rcode

43 r1

50 r2

30 r2

pcode Name rcode

pcode Name

44 Terol

46 València

16 Conca

scode rcode

44 r1

50 r2
=

pcode Name scode rcode

44 Terol 44 r1

44 Terol 50 r2

46 València 44 r1

46 València 50 r2

16 Conca 44 r1

16 Conca 50 r2

46

2.1.2.- R.A. (Division Operator)

R ÷ S
Let R and S be two relations with schemas {(A1, D1),…,(An, Dn), (B1,
E1),…, (Bm, Em)} and {(B1, E1),…, (Bm, Em)} respectively. The division of
R by S, denoted by R ÷ S, is a relation defined as follows:

R ÷ S = { {(A1, v1),…, (An, vn)} |
∀s ∈ S (s = {(B1, w1),…,(Bm, wm)} →

∃ t ∈ R and t = {(A1, v1),…,(An, vn), (B1, w1),…,(Bm, wm)}) }

The schema of R ÷ S is {(A1, D1),…, (An, Dn)}. The division operator is
neither associative nor commutative.

47

2.1.2.- R.A. (Selection Operator)

R WHERE F

Let R be a relation of schema {(A1, D1),…, (An, Dn)}. The selection in R
with respect to the condition F, denoted by R WHERE F, is a relation of
the same schema R, which is composed by all the tuples in R such that
condition F holds.

R WHERE F = { t | t ∈ R and F(t) has value true}

What is the condition F(t) like?

How is F(t) evaluated?

48

2.1.2.- R.A. (Selection Operator)

What is the condition F like?

Types of Comparison:
• Null(Ai)
• Ai α Aj
• Ai α a

where α is a comparison operator (<, >, ≤, ≥, =, ≠), Ai and Aj are
attribute names and a is a value from the domain associated with
attribute Ai, different from the null value.

The Conditions are constructed from comparisons, using parentheses
and logical operators (∨, ∧, ¬).

49

2.1.2.- R.A. (Selection Operator)

How is the condition F(t) evaluated?

Null Value ⇒ Need for a Trivalued Logic {T, F, undefined}:

• if F is of the form Ai α Aj then F(t) is evaluated as undefined if at
least one of Ai or Aj has null value in t; otherwise it is evaluated to the
certainty value of the comparison t(Ai) α t(Aj);

• if F is of the form Ai α a then F(t) is evaluated as undefined if Ai has
null value in t; otherwise it is evaluated to the certainty value of the
comparison t(Ai) α a; and

• if F is of the form null(Ai) then F(t) is evaluated as true if Ai has null
value in t; otherwise it is evaluated to false.

50

2.1.2.- R.A. (Selection Operator)

Trivalued Logic: (Truth tables for the logical connectives ∧, ∨ and ¬)

G H F = G ∧ H F = G ∨ H G F = ¬ G

false false false false false true

undefined false false undefined undefined undefined

true false false true true false

false undefined false undefined

undefined undefined undefined undefined

true undefined undefined true

false true false true

undefined true undefined true

true true true true

51

2.1.2.- R.A. (Selection Operator)

Example:

Let R be

person_id name address
20450120 Juan Pérez Cuenca 20

12904569 José Abad Blasco Ibáñez 35
? María Gutiérrez Reina 7

12345678 Pepa Gómez Colón 15

 Operations:
R where ¬ (name = “Juan Pérez”)

∧ (person_id > 12500500) =
person_id name address
12904569 José Abad Blasco Ibáñez 35

R where ¬ (person_id > 12500500) =
person_id name address
12345678 Pepa Gómez Colón 15

R where (person_id <= 12500500) ∨ (person_id > 12500500) = R ?

52

2.1.2.- Summary of Operators

• INSERTION
• DELETION
• RENAMING
• SELECTION
• PROJECTION
• UNION
• INTERSECTION
• DIFFERENCE
• CARTESIAN PRODUCT
• JOIN
• DIVISION

Relational
Algebra

53

2.2.- Representation of Reality

• For each object in reality about which we want to have information
we define a relation whose attributes denote the properties of
interest for these objects (code, name, …) in such a way that each
tuple which is present in this relation must be interpreted as a
particular instance of an object;

• In order to represent associations between objects we use explicit
references through attributes which identify each object.

Reality

D.B.

Design / Modelling

Interpretation

Representation
of Reality

54

2.2.- Representation of Reality

EXAMPLE 1:

• Reality: Dishes and menus in a restaurant.

• Database schema:

Menu(menu_name: d4, price: d2)

Is_composed_of(dish_name: d5, menu_name: d4)

Dish(dish_name: d5, calories: d6, wine_id: d8, cook_name:d7)

Wine(wine_id: d8, wine_name:d11, year: d13, colour:d14)

Cook(name:d7, age: d9, country:d10)

Intervenes(ing_name: d1, dish_n:d5, quantity:d15)

Ingredient(ing_name: d1, price: d2, description:d3)

55

2.2.- Representation of Reality

CARDINALITY/MULTIPLICITY between two objects A and B:

Generic Notation

R (A(minA, maxA), B(minB, maxB))

• Each tuple in A requires a minA of corresponding tuples in B,
but at most maxA.

• Each tuple in B requires a minB of corresponding tuples in A,
but at most maxB.

Example:
A wine may appear in many dishes but a dish must

have one and only one wine.

56

2.2.- Representation of Reality

Between two relations only one maximum can be greater than one.

Be careful! This implies that:

In the relational model, the cardinalities
several to several (many to many) can only be

obtained through an intermediate table.

Example: a dish may have many ingredients. Similarly, an ingredient may
appear in many dishes. We need the table: intervenes.

57

2.2.- Representation of Reality

INTUITIVE REPRESENTATION (Ms. Access)

n m
A B

If this cardinality is ∞, then it corresponds to (0, ∞)
If this cardinality is 1, then it corresponds to (0, 1)

58

2.2.- Representation of Reality

EXAMPLE 1:

59

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT:

• Obtain the name of the dishes with less than 2,000 calories:

• Obtain the name of the cook of the dishes with white wine.

• Obtain all the information from the dishes cooked by Russian cooks:

60

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT (Contd.):

• Obtain the age of the cook whose dishes only have old vintage wines
(year < 1982).

• Obtain the name of the menus without egg:

• Obtain the name of the most expensive ingredient:

