UNIT 11

The Relational Data Model

The Relational Data Model

Objectives:

— To know the data structures of the relational model: the tuple and the
relation, as well as their associated operators.

— To know (basically) how to model the reality using the relational model.

— To be familiar with the algebraic approach for manipulating a database, as
well as the logical perspective.

— To know the mechanisms of the relational model needed to express
integrity constraints: domain definition and key definition.

— To know additional mechanisms to define constraints and express activity
in databases: triggers.

The Relational Data Model

Syllabus:

Introduction
2.1.- The relational data model (algebraic approach).
2.1.1.- Structures: tuple and relation.
2.1.2.- Relational Schema: representation of reality.
2.1.3.- Operators on relations: relational algebra
2.2.- Relational schema: representation of reality
2.3.- The relational data model (logical approach).
2.3.1.- Logic and databases
2.3.2.- Logical mterpretation of a relational database.

The Relational Data Model

Syllabus: (cont’d.):

2.4.- Integrity constraints.
2.4.1.- Constraints over attributes: domain and not null.
2.4.2.- Uniqueness constraints.
2.4.3.- Notion of primary key. Primary key constraint.
2.4.4.- Referential integrity: Foreign key constraint.
2.4.5.- Referential triggered action: action directives.

2.4.6.- Other mechanisms to represent integrity constraints.

The Relational Data Model

Syllabus: (cont’d.):
2.5.- SQL — The Relational Database Standard.
2.5.1.- The Data Definition Language (DDL).
2.5.2.- The Data Manipulation Language (DML).
2.5.2.1 INSERT, DELETE and UPDATE.
2.5.2.2 Logical approach in the SELECT clause.
2.5.2.3 Algebraic approach in the SELECT clause

2.6.- Derived information: views
2.6.1.- Notion of view.
2.6.2.- Applications.
2.6.3.- Views in SQL.

The Relational Data Model

Syllabus: (cont’d.):

2.7.- Activity mechanisms: triggers.
2.7.1.- Notion of trigger.
2.7.2.- Event-Condition-Action (ECA) rules
2.7.3.- Applications
2.7.4.- Triggers in SQL.

2.8.- Evolution of the relational model

2.- Introduction to the Relational Data Model

o Historical milestones about the Relational Data Model
(RDM):

— 70’s: Proposed by E. Codd 1n 1970

— 80’s: Becomes popular 1n practice (Oracle, ...). ANSI
defines the SQL standard.

— 90’s: Generalisation and standardisation (SQL’92)
and extensions.

Reasons of success:

Simplicity: a database is a “set of tables”.

2.- The RDM: Components and Approaches

RDM = Data structures + Associated operators

e domains

o attributes
Common data structures: <

» the tuple

._* the relation.

Two Operator Families:

Algebraic Logical

1 /'/\

R.A. T.R.C D.R.C.

2.- The RDM: Terminology

Data structures:

Common Terminology RDM Terminology
(computing) (mathematical)

* data types === -« domains

 fields / columns === - qitributes

e record/row <{mmmmm»> - fuple

* table < ¢ relation

They are not exactly equivalent

2.1.- The RDM: Algebraic Approach

Algebraic

!

R.A.

Logical

—

T.R.C D.R.C.

» The algebraic approach sees tables as sets, and the set of
operators working with them as an algebra.

10

2.1.1.- Notion of tuple

Tuple schema:

A tuple schema, 7, 1s a set of pairs of the form:

1= {(AD Dl): (A29 D2)9' *e (Am Dn)}

where:

{4, 4,, ..., A,} (n > 0) 1s the set of attribute names in
the schema, necessarily different.

D,, D, ..., D, are the domains associated with the above-
mentioned attributes, which not necessarily have to be
different.

11

2.1.1.- Notion of tuple

Example of tuple schema:

Person = {(person_id, integer), (name, string), (address, string)}

where:

{ person 1id, name, address } 1s the set of attribute names in the
schema.

integer, string, string are the domains which are associated with
the attributes.

12

2.1.1.- Notion of tuple
Tuple:

A tuple, ¢, of tuple schema t where

T= 1, D), (Ay, D)., (4,, D)}
1s a set of pairs of the form:

t= 1Ay, Vi), (Ay, Vo)seoos (A Vi)
such that Viv, € D..

13

2.1.1.- Notion of tuple

Examples of Tuple:

Given the following tuple schema:

Person = {(person_id, integer), (name, string), (address, string)}

We have:
t, = {(person_id, 2544), (name, “Joan Roig”), (address, “Sueca 15”)}

t, = {(person_id, “2844F”), (name, “R3PO”), (address, “460227)}

t; = { (name, “Pep Blau”), (person_id, 9525), (address, “dunno!”)}

2.1.1.- Domains

What happens if we don’t know the value a
tuple takes 1n some of its attributes?

PROBLEM:

Solution in Programming Languages: use of special or extreme values
(-1, “Empty”, “ 7, “We don’t know”, 0, “No address™, “---", ...)

Solution in the Relational Model: NULL VALUE (?)

A Domain 1s something more than a datatype:

A domain 1s a set of elements which always
includes the NULL value.

15

2.1.1.- Tuple Operators
Given tuple: t={(A,, vy, ..., (A, V), ..., (4,,Vv,)}

GET:

 GET(t, A) = v,
SET:

* SET(t, A, w) = {(A, V), .., (AW, ..o, (A, V)

Usual notation
* GET(, A): t.A. HA,)
« SET(t, A, w)): tA; < w; HA) < w;

16

2.1.1.- Example

Given the domain: id_dom: integer
name dom, add dom: string(20)

Tuple schema:
Person = {(person_id, 1d dom), (name, name dom), (address, add dom)}
Tuples:
t, = {(person_1d, 12345678), (name, “Pepa Gomez”), (address, “Paz 10)}
t, = { (name, “Pep Blau”™), (person_id, 9525869), (address, ?) |

Operations:
GET(¢,, name) = “Pepa GOmez”
SET (z,, address, “Colon 157) = {(person id, 12.345.678), (name, “Pepa
Gomez”), (address, “Colon 157)}
GET (%,, address) = ?

17

We say that t,.address is null, not that t,.address = null.

2.1.1.- Notion of relation (algebraic)

Relation:

A relation 1s a set of tuples of the same schema.

Relation schema

A relation schema 1s the schema of the tuples composing the
relation.

Notation
R(A;: D, A;:D,,...., A:D,)
Defines a relation R of schema

{(Alﬂ D1)> (A2> D2)9' ©e (Am Dn)}

18

2.1.1.- Properties of a relation
Properties of a relation

* Degree of a relation: number of attributes of its schema

 Cardinality of a relation: number of tuples that compose the
relation.

 Compatibility: two relations R and S are compatible 1f their
schemas are 1dentical.

19

2.1.1.- Example of relation

Example:

A relation of the PERSON schema might be as follows:

{{(person _1d, 1234), (name, “Pepa Gomez”), (address, “Colon 15°)},
{ (person_1d, 2045), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “José¢ Abad”), (person id, 1290), (address, “Blasco Ibafnez 35)},
{ (name, “Maria Gutiérrez”), (person id, 35.784.843) (address, “Reina 7)} }

Degree:
Cardinality:
Compatible with:

20

2.1.1.- Representation of a relation

Representation of a relation - TABLE

* tuples are represented as rows
e attributes give name to the column headers

Example: PERSON relation

Column ~ Attribute
Person_id Name Address
2045 Juan Pérez Cuenca 20
1290 José Abad Blasco Ibanez 35
RO 3578 Maria Gutiérrez Reina 7
Tuple B
1234 Pepa GOmez Colon 15

2.1.1.- Difterence Relation - Table

The Table is only a Matrix Representation of a Relation

TRAITS WHICH DISTINGUISH A RELATION:

(Derived from the definition of relation as a set of sets)

e There can’t be repeated tuples 1n a relation (a relation 1s a set).
e There 1sn’t a top-down order in the tuples (a relation 1s a set).

e There i1sn’t a left-to-right order in the attributes of a relation (a tuple
1s a set). The name of the attribute must be used to choose.

22

2.1.1.- Difference Extension - Schema

EXTENSION (data) SCHEMA

Tuple

\/ Tuple schema = Relation definition

(Extension of a) relation : set of
tuples 1n a relation

Database: Relation Schema: set of relation

set of relations <G a’eﬁm.tzons Wh}ch represent an
information system

Attention!: DBMSs understand a table as the definition of a relation and not as its)3
content, which eventually changes by applying operators.

2.1.1.- Relation Operators

Operators for the Relation Structure:

* INSERTION
 DELETION

* SELECTION

* PROJECTION

 UNION

* INTERSECTION

* DIFFERENCE

« CARTESIAN PRODUCT
* JOIN

> Also part of the R.A.

24

2.1.1.- Insertion

Insert(R, f) =R U { ¢} |Rand?musthave the same schema

Example:

Insert({ {(person id, 12.345.678), (name, “Pepa Gomez”), (address, “Colon 157)},
{ (person_1d, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “Maria Guti¢rrez”), (person 1d, 35.784.843) (address, “Reina 77)} },

{ (name, “José Abad”), (person_id, 12.904.569), (address, “Blasco Ibaiez 35)})

{ {(person_1d, 12.345.678), (name, ‘“Pepa Gomez”), (address, “Coldén 157)},
{(person_1id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },

{ (person_id, 12.904.569), (name, “José Abad”), (address, “Blasco Ibanez 35)}.
{(name, “Maria Guti¢rrez”), (person 1d, 35.784.843) (address, “Reina 7)} }

Question: How does insertion affect ...?:
degree:

cardinality: 55

2.1.1.- Deletion

Delete(R, 1) =R — { ¢t} | Randmust have the same schema

Example:

Delete({ {(person id, 12.345.678), (name, “Pepa Gomez”), (address, “Colon 15)},
{(person_1d, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (person_id, 12.904.569), (name, “José Abad”), (address, “Blasco Ibanez 35)}.
{(name, “Maria Guti¢rrez”), (person 1d, 35.784.843) (address, “Reina 7”)} }

{ (name, “José Abad”), (person_id, 12.904.569), (address, “Blasco Ibaiez 35)})

{ {(person _id, 12.345.678), (name, ‘“Pepa GOémez”), (address, “Coldén 157)},
{ (person _id, 20.450.120), (name, “Juan Pérez”), (address, “Cuenca 20”) },
{ (name, “Maria Gutieérrez”), (person id, 35.784.843) (address, “Reina 7”)} },

Question: How does deletion affect ...?:
Degree:
Cardinality: 26

2.1.2.- Relational Algebra (R.A.)

R.A.: Set of unitary or binary operators which act upon relations

U They are closed operators: the result of applying any R.A. operator
over one or two relations is a relation.

.
union,

Intersection,
difference, and
Cartesian product.

o Set operators:

N~

(" selection,
e Properly relational operators: projection,
division, and

(_join.

. 27
e Special operator: rename

2.1.2.- R.A. (Rename Operator)

R((A;, B),..., (A, B))

Let R be a relation of schema {(4,, D,), (4,, D,),..., (4,, D,)}. Renaming
in R the attributes A,,..., 4;to B,,..., B, denoted as R((4,, B)), ..., (4, B))),
produces a relation which contains each tuple in R, but changing their
attribute names appropriately.

R((A;; By, (A, B)) =
WALV, (B Viseens (B, V) (Ag, Vi) |
{(A, v, (A V), (Aj, N (A, Vv,)} € R}
The schema of the resulting relation 1s the following:

{(A;,D)),..., (B, D),..., (B, D)),..., (A, D)}

28

2.1.2.- R.A. (Rename Operator)

Example:
Consider the following schema of a relational database:

River (rcode: rcode dom, name: name dom)

Other Rivers (rcode: rcode dom, name: name dom)
Province (pcode: pcode dom, name: name dom)
Crosses (pcode: pcode dom, rcode: rcode dom)

Question:
How would we rename the relation Crosses so that the attribute
pcode becomes ProvCode and rcode becomes RiverCode?

29

2.1.2.- R.A. (Rename Operator)

The rename operator is applied over relations.

NOT over relation schemas

Example:
Let Crosses be a relation represented by the following table:
Crosses
pcode rcode
44 2
46 2
45 rl
28 rl
16 rl
Crosses
ProvCode| RiverCode
44 2
Crosses((pcode, ProvCode), (rcode, RiverCode)) = 42 12
4 rl
28 rl
16 rl

2.1.2.- R.A. (Set Operators)

R <

-

Union: R U S

> S

Intersection: R n S

R <

(-

on

Difference: R — S

(-

R <
\
\
> S
J
Product: R x S
N S a X
b X
Y © X
a y
b |y
C y

> S

31

2.1.2.- R.A. (Union Operator)

RUS

Let R and S be two compatible relations with schema {(4,, D,),..., (4

R and S must have the same schema

n’

D)}. The union of R and §, denoted by R U §, 1s a relation with the same
schema as R and §, and 1s composed of all the tuples which belong to R,

to S, or to both relations.

RuS={tjteR v te S}

The union is associative and commutative

32

2.1.2.- R.A. (Union Operator)

Example:

pcode | Name

44 Teruel
46 Valencia
16 Cuenca
12 Castellon

‘ pcode [Name \ ‘ 46

16 Cuenca
45 Toledo
28 Madrid
12 Castello

‘ pcode | Name \

‘ 44 Teruel
Valencia
‘ 16 Cuenca
— ‘ 12 Castellon
‘ 45 Toledo
|28 |Madrid
12 Castello

2.1.2.- R.A. (Difference Operator)

R-S R and S must have the same schema

Let R and S be compatible relations with schema {(4,, D,),..., (4,, D,)}.
The difference between R and S, denoted by R — S, 1s a relation with the
same schema as R and S, and 1s composed by all the tuples which belong
to R and do not belong to S.

R-S={t|teR A teg§}

The difference 1s neither associative nor commutative.

34

2.1.2.- R.A. (Difference Operator)

Example:

‘ pcode | Name \

‘ 44 Teruel . ‘ ‘ beode | Name \
46 Valencia ‘ 16 Cuenca Ipcode Name
16 Cuenca _‘ 45 Toledo _ |44 Teruel
12 Castellon ‘)3 Madrid ‘ 46 Valencia
45 Toledo 19 Castells 12 Castellon
28 Madrid

12 Castello 35

2.1.2.- R.A. (Intersection Operator)

RNS

R and S must have the same schema

Let R and S be two compatible relations with schema {(4,, D,),...,
(4,, D,))}. The intersection of R and S, denoted by R m S, 1s a relation
with the same schema as R and S, and 1s composed by all the tuples

which belong to R and to S.

RNS={t|teRAateS}

The 1ntersection i1s associative and commutative.

36

2.1.2.- R.A. (Intersection Operator)

Example:

pcode [Name

44 Teruel
46 Valencia
16 Cuenca
12 Castellon

‘ pcode | Name \

16 Cuenca
45 Toledo
28 Madrid
12 Castello

‘ pcode | Name \

|16

Cuenca ‘

37

2.1.2.- R.A. (Cartesian Product Operator)

R xS R and S cannot have attribute names in common

Let R and S be two relations with schemas {(4,, D,),..., (4,, D,)} and
{(B,, E,),..., (B,, E)} respectively such that they do not have any
attribute name in common. The Cartesian product of R and §, denoted by
R x S, 1s a relation whose schema 1s the union of the schemas from R and
S, and 1s composed by all the tuples which can be constructed by
combining one from R and one from S.

RxS={{(A, V), (Ap V), B, Wy, (B, W) |
WAL V),eens (A, V) € Rand {(By, wy),..., (B, W)} € S}

The schema of the resulting relation from R x S'1s {(4,, D,),..., (4,, D,),
By, E),...., B,, E,}. The Cartesian product 1is associative and
commutative. 38

2.1.2.- R.A. (Cartesian Product Operator)

Example:
pcode | ProvName
44 Teruel
46 Valencia
16 Cuenca
12 Castellon

pcode | ProvName |rcode | name
44 Teruel rl Sénia
44 Teruel 12 Ttria
44 Teruel 3 Xuquer
46 Valencia rl Sénia
rcode | name 46 Valencia r2 Turia
rl Sénia 46 Valencia r3 Xuquer
2 Turia — 16 Cuenca rl Sénia
3 Xtquer 16 Cuenca 12 Taria
16 Cuenca 3 Xuquer
12 Castellon rl Sénia
12 Castellon 12 Ttria
12 Castellon 3 Xuquer

2.1.2.- R.A. (Relational Operators)

al

a2

a3

bl

bl

b2

bl

b2

b3

Selection
Join
cl al
c2 a2
c3 a3

bl

bl

b2

cl

cl

c2

Projection

Division

40

2.1.2.- R.A. (Projection Operator)

R[4, A,..., 4]

Let R be a relation with schema {(4,, D,),..., (4,, D,)} and let {4, 4;,...,
A,} be a subset of the attribute names in R with m elements (1 < m < n).
The projection of R over {4, Aj,..., A,}, denoted by R[4, Aj,..., A], 1s a
relation which is defined as follows:

R[Aia AJ» s Ak]: {{(Av Vi)9 (AJ9 Vj)9° L) (Aka Vk)} |
3t e R such that {(A;, vy), (A,) or(Ap v} St)

The relation schema of R[4, Aj,. AL 1s
{(Aia Dl')a (Aja D])a . '9(Aka Dk)} 41

2.1.2.- R.A. (Projection Operator)

Example:

Let R be

R[person id, address] =

person_id Name Address
20.450.120 Juan Perez Cuenca 20
12.904.569 Jos¢ Abad Blasco Ibafnez 35
35.784.843 Maria Gutiérrez Reina 7
12.345.678 Pepa GOmez Colon 15

person_id Address

20.450.120 Cuenca 20

12.904.569 Blasco Ibafiez 35

35.784.843 Reina 7

12.345.678 Colon 15 .

2.1.2.- R.A. (Join Operator)

R><«S

Let R and S be two relations with schemas {(4,, D,),..., (4,, D,), (B,
E)),...(B, E,)} and {(B,E)),....(B,.E,), (Cl,Fl),...,(Cp,Fp)}, respectively,
in such a way that B,,..., B, are the common attributes in both schemas.
The join of R and S, denoted by R><S, 1s a relation which contains all the
tuples which can be constructed by combining a tuple from R with another

from S such that they have the same value for every common attribute
name.

R ><US={{(A} V)5 s(Ap, Vi), (B, W), (B, W), (C, 1), (G) 3
AL VDo (A, V), By, W), (B, W) € ROA
{(Bb Wl)a' *e (Brm Wm)a (Clﬂ YI)>'° *9 (Cp? Yp)} €S }

The join operator 1s associative and commutative. The resulting reI%tion
schema is {(4,, D)),..., (4,, D,), (B, E),..., (B,, E,), (C}, F)),..., (C,, F,)}.

2.1.2.- R.A. (Join Operator)

Example:

pcode | rcode
pcode | name 44 rl pcode | name rcode
44 Teruel 46 2 44 Teruel rl
46 Valencia_| [X] 30 r2 — 146 Valencia |12
16 Cuenca 20 rl 44 Teruel r3
12 Castellon 44 3

! 12 Castellon | rl
12 rl

44

2.1.2.- R.A. (Join Operator)

More examples:

pcode | Name
44 Terol

46 Valeéncia
16 Conca

12 Castello
pcode [Name
44 Terol

46 Valencia
16 Conca

‘pcode rcode

[X]‘ 43 rl

‘ 50 12

‘ 30 12

‘ scode | rcode
MAl44 [n1

| 50 2

— | pcode | Name rcode
pcode | Name scode | rcode

44 Terol 44 rl

44 Terol 50 12

— |46 Valéncia |44 rl

46 Valéncia | 50 12

16 Conca 44 rl

16 Conca 50 12

2.1.2.- R.A. (Division Operator)

RS

Let R and § be two relations with schemas {(4,, D,),....(4,, D,), (B,
E),....(B,, E)} and {(B,, E,),..., (B,,, E)} respectively. The division of
R by §, denoted by R + §, 1s a relation defined as follows:

R+8= { {(AP Vl)a“'a (An9 Vn)} |
Vs eS(s={B;,w),...(B_,w_)} —>
Jte Randt= {(A,, v|),...,(A, V), (B, w)),....(B_,w)})}

The schema of R ~ §'1s {(4,, D,),..., (4,, D,)}. The division operator 1s

neither associative nor commutative. N

2.1.2.- R.A. (Selection Operator)

R WHERE F

Let R be a relation of schema {(4,, D,),..., (4,, D,)}. The selection in R
with respect to the condition F, denoted by R WHERE F, 1s a relation of
the same schema R, which 1s composed by all the tuples in R such that
condition F holds.

R WHERE F= {t| t € R and F(t) has value true}

What 1s the condition F(7) like?

How 1s F(¢) evaluated? 4

2.1.2.- R.A. (Selection Operator)

What is the condition F like?

Types of Comparison:
* Null(4))
* ;a4
* A.aa

where o 1S a comparison operator (<, >, <, 2, =, #), 4, and A; are
attribute names and a 1s a value from the domain associated with
attribute A4, different from the null value.

The Conditions are constructed from comparisons, using parentheses
and logical operators (v, A, 7).

48

2.1.2.- R.A. (Selection Operator)

How is the condition F(7) evaluated?

Null Value = Need for a Trivalued Logic {T, F, undefined}:

e 1f F'is of the form 4; a 4, then F(¢) 1s evaluated as undefined 1f at
least one ot 4; or 4; has null value in #; otherwise it is evaluated to the
certainty value of the comparison #4;) o #(4));

o if F1is of the form A; a a then F(¥) 1s evaluated as undefined if 4, has
null value 1n #; otherwise 1t 1s evaluated to the certainty value of the
comparison #(A;) a a; and

o 1f F1s of the form null(4;) then F(¢) 1s evaluated as true 1f 4, has null

value 1n #; otherwise 1t 1s evaluated to false. .

2.1.2.- R.A. (Selection Operator)

Trivalued Logic: (Truth tables for the logical connectives A, v and —)

G F=—-G
false true
undefined [undefined
true false

G H F=GAH|[F=GVH
false false false false
undefined| false false undefined
true false false true

false |undefined| false undefined
undefined | undefined | undefined | undefined
true |undefined | undefined true
false true false true
undefined| true undefined true
true true true true

50

2.1.2.- R.A. (Selection Operator)

Example: person_id name address
20450120 Juan Pérez Cuenca 20
12904569 Jos¢ Abad Blasco Ibafnez 35
LetR be ? Maria Gutiérrez Reina 7
12345678 Pepa Gomez Colon 15
Operations:
R where — (name = “Juan Pérez”) person_id name address
A (person_id > 12500500) = 12904569 | José Abad | Blasco Ibafiez 35
person_id name address
R where = (person_id > 12500500) = M558 Pepa Gomez | Colon 15

R where (person i1d <= 12500500) v (person_id > 12500500) =R ? 51

2.1.2.- Summary of Operators

« INSERTION

- DELETION

« RENAMING)
« SELECTION

« PROJECTION

« UNION

« INTERSECTION

- DIFFERENCE

« CARTESIAN PRODUCT

« JOIN

« DIVISION J

Relational
Algebra

52

2.2.- Representation of Reality

Representation

Design / Modelling of Reality
Interpretation

e For each object in reality about which we want to have information
we define a relation whose attributes denote the properties of
interest for these objects (code, name, ...) in such a way that each
tuple which 1s present in this relation must be interpreted as a
particular instance of an object;

e In order to represent associations between objects we use explicit
references through attributes which identify each object. 53

2.2.- Representation of Reality

EXAMPLE 1:

e Reality: Dishes and menus in a restaurant.

e Database schema:
Menu(menu name: d4, price: d2)
Is composed of(dish name: d5, menu name: d4)
Dish(dish name: d5, calories: d6, wine id: d8, cook name:d7)
Wine(wine id: d8, wine name:dl11, year: d13, colour:d14)
Cook(name:d7, age: d9, country:d10)
Intervenes(ing name: d1, dish n:d5, quantity:d15)

Ingredient(ing name: dl, price: d2, description:d3) 54

2.2.- Representation of Reality

CARDINALITY/MULTIPLICITY between two objects A and B:
Generic Notation
R (4(min,, max,), B(ming, maxy))

e Each tuple in 4 requires a min, of corresponding tuples in B,
but at most max .

e Each tuple in B requires a ming of corresponding tuples 1n 4,
but at most maxg.

Example:
A wine may appear in many dishes but a dish must

have one and only one wine.

55

2.2.- Representation of Reality

Between two relations only one maximum can be greater than one.

Be careful! This implies that:

In the relational model, the cardinalities
several to several (many to many) can only be
obtained through an intermediate table.

Example: a dish may have many ingredients. Similarly, an ingredient may
appear in many dishes. We need the table: intervenes. 56

2.2.- Representation of Reality

INTUITIVE REPRESENTATION (Ms. Access)

i —B

If this cardinality 1s oo, then it corresponds to (0, o)
If this cardinality 1s 1, then 1t corresponds to (0, 1)

57

2.2.- Representation of Reality

EXAMPLE I:

Intervenes Ingredient

ng_name
quankity

Dish Wine
dish_name
calories
wine_id
cook_name

Ing_naime
price
descripkion

Is_ Composed_Of

dish_name
MENU_Name

wine_id
Wine_narme
wEear
colour

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT:
e Obtain the name of the dishes with less than 2,000 calories:

* (Obtain the name of the cook of the dishes with white wine.

« Obtain all the information from the dishes cooked by Russian cooks:

59

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT (Contd.):

* Obtain the age of the cook whose dishes only have old vintage wines
(year < 1982).

« Obtain the name of the menus without egg:

« Obtain the name of the most expensive ingredient:

60

