

1

Objectives:

- To know the data structures of the relational model: the tuple and the relation, as well as their associated operators.
- To know (basically) how to model the reality using the relational model.
- To be familiar with the algebraic approach for manipulating a database, as well as the logical perspective.
- To know the mechanisms of the relational model needed to express integrity constraints: domain definition and key definition.
- To know additional mechanisms to define constraints and express activity in databases: *triggers*.

Syllabus:

Introduction

2.1.- The relational data model (algebraic approach).

2.1.1.- Structures: tuple and relation.

2.1.2.- Relational Schema: representation of reality.

2.1.3.- Operators on relations: relational algebra

2.2.- Relational schema: representation of reality

2.3.- The relational data model (logical approach).

2.3.1.- Logic and databases

2.3.2.- Logical interpretation of a relational database.

Syllabus: (cont'd.):

- 2.4.- Integrity constraints.
 - 2.4.1.- Constraints over attributes: *domain* and *not null*.
 - 2.4.2.- Uniqueness constraints.
 - 2.4.3.- Notion of primary key. Primary key constraint.
 - 2.4.4.- Referential integrity: Foreign key constraint.
 - 2.4.5.- Referential triggered action: action directives.
 - 2.4.6.- Other mechanisms to represent integrity constraints.

Syllabus: (cont'd.):

2.5.- SQL – The Relational Database Standard.

2.5.1.- The Data Definition Language (DDL).

2.5.2.- The Data Manipulation Language (DML).

2.5.2.1 INSERT, DELETE and UPDATE.

2.5.2.2 Logical approach in the SELECT clause.

- 2.5.2.3 Algebraic approach in the SELECT clause
- 2.6.- Derived information: views

2.6.1.- Notion of view.

2.6.2.- Applications.

2.6.3.- Views in SQL.

Syllabus: (cont'd.):

2.7.- Activity mechanisms: triggers.

2.7.1.- Notion of trigger.

2.7.2.- Event-Condition-Action (ECA) rules

2.7.3.- Applications

2.7.4.- Triggers in SQL.

2.8.- Evolution of the relational model

2.- Introduction to the Relational Data Model

- *Historical milestones about the Relational Data Model (RDM):*
 - 70's: Proposed by E. Codd in 1970
 - 80's: Becomes popular in practice (Oracle, ...). ANSI defines the SQL standard.
 - 90's: Generalisation and standardisation (SQL'92) and extensions.

Reasons of success:

Simplicity: a database is a "set of tables".

2.- The RDM: Components and Approaches

RDM = Data structures + Associated operators

Common data structures:

- domains
- attributes
- the *tuple*
- the *relation*.

Two Operator Families:

2.- The RDM: Terminology

Data structures:

Common Terminology (computing)

- data types
- fields / columns
- record / row
- table

RDM Terminology (mathematical)

- domains
- attributes
- tuple
- relation

They are not *exactly* equivalent

2.1.- The RDM: Algebraic Approach

• The algebraic approach sees tables as sets, and the set of operators working with them as an algebra.

2.1.1.- Notion of tuple

Tuple schema:

A tuple schema, τ , is a set of pairs of the form:

$$\tau = \{ (A_1, D_1), (A_2, D_2), \dots, (A_n, D_n) \}$$

where:

 $\{A_1, A_2, ..., A_n\}$ (n > 0) is the set of **attribute names** in the schema, necessarily different.

 $D_1, D_2, ..., D_n$ are the **domains** associated with the abovementioned attributes, which not necessarily have to be different. Example of *tuple schema*:

Person = {(person_id, integer), (name, string), (address, string)}

where:

- { person_id, name, address } is the set of attribute names in the schema.
- integer, string, string are the domains which are associated with the attributes.

2.1.1.- Notion of tuple

Tuple:

A tuple, *t*, of tuple schema τ where

$$\tau = \{ (A_1, D_1), (A_2, D_2), \dots, (A_n, D_n) \}$$

is a set of pairs of the form:

$$\mathbf{t} = \{ (A_1, \mathbf{v}_1), (A_2, \mathbf{v}_2), \dots, (A_n, \mathbf{v}_n) \}$$

such that $\forall i v_i \in D_i$.

2.1.1.- Notion of tuple

Examples of *Tuple*:

Given the following tuple schema:

Person = {(person_id, integer), (name, string), (address, string)}

We have:

 $t_1 = \{(\text{person_id}, 2544), (\text{name}, "Joan Roig"), (address, "Sueca 15")\}$

 $t_2 = \{(\text{person_id}, ``2844F''), (\text{name}, ``R3PO''), (\text{address}, ``46022'')\}$

 $t_3 = \{ \text{(name, "Pep Blau"), (person_id, 9525), (address, "dunno!")} \}$

PROBLEM:

What happens if we don't know the value a tuple takes in some of its attributes?

Solution in Programming Languages: use of special or extreme values (-1, "Empty", "", "We don't know", 0, "No address", "---", ...)

Solution in the Relational Model: NULL VALUE (?)

A **<u>Domain</u>** is something more than a datatype:

A domain is a set of elements which always includes the NULL value.

2.1.1.- Tuple Operators

Given tuple: $t = \{(A_1, v_1), ..., (A_i, v_i), ..., (A_n, v_n)\}$

GET:

• GET $(t, A_i) = v_i$

SET:

• SET(t,
$$A_i, w_i$$
) = {(A_1, v_1), ..., (A_i, w_i), ..., (A_n, v_n)}

Usual notation

- GET(t, A_i): tA_i $t(A_i)$
- SET(t, A_i, w_i): $tA_i \leftarrow w_i$ $t(A_i) \leftarrow w_i$

2.1.1.- Example

Given the domain: id_dom: integer name_dom, add_dom: string(20)

Tuple schema:

Person = {(person_id, id_dom), (name, name_dom), (address, add_dom)} Tuples:

```
t_1 = \{(\text{person\_id}, 12345678), (\text{name}, "Pepa Gómez"), (address, "Paz 10")\}
t_2 = \{(\text{name}, "Pep Blau"), (\text{person\_id}, 9525869), (address, ?)\}
```

Operations:

 $GET(t_1, name) = "Pepa Gómez"$ $SET(t_1, address, "Colón 15") = \{(person_id, 12.345.678), (name, "Pepa Gómez"), (address, "Colón 15")\}$ $GET(t_2, address) = ?$

We say that <u>t₂.address is null</u>, not that <u>t₂.address = null</u>.

17

2.1.1.- Notion of relation (algebraic)

Relation:

A relation is a set of tuples of the same schema.

Relation schema

A relation schema is the schema of the tuples composing the relation.

Notation

$$R(A_1: D_1, A_2: D_2, ..., A_n: D_n)$$

Defines a relation R of schema

$$\{(A_1, D_1), (A_2, D_2), \dots, (A_n, D_n)\}$$
18

Properties of a relation

- *Degree of a relation:* number of attributes of its schema
- *Cardinality of a relation:* number of tuples that compose the relation.
- *Compatibility:* two relations *R* and *S* are compatible if their schemas are identical.

Example:

A relation of the *PERSON* schema might be as follows:

{{(person_id, 1234), (name, "Pepa Gómez"), (address, "Colón 15")},
{ (person_id, 2045), (name, "Juan Pérez"), (address, "Cuenca 20") },
{ (name, "José Abad"), (person_id, 1290), (address, "Blasco Ibáñez 35)},
{ (name, "María Gutiérrez"), (person_id, 35.784.843) (address, "Reina 7")}}

Degree:

Cardinality:

Compatible with:

2.1.1.- Representation of a relation

Representation of a relation \rightarrow TABLE

- tuples are represented as rows
- attributes give name to the column headers

Example: PERSON relation

Row ≈

Tuple

PE	EKSON rel	ation	Column	$n \approx \text{Attribute}$		
	Person_id	Nan	ne	Address		
	2045	Juan P	érez	Cuenca 20	ca 20	
	1290	José A	bad	Blasco Ibáñez	z 35	
	3578	María Gu	tiérrez	Reina 7		
	1234	Pepa G	ómez	Colón 15		

The Table is only a Matrix Representation of a Relation

TRAITS WHICH DISTINGUISH A RELATION: (Derived from the definition of relation as a set of sets)

- There can't be repeated tuples in a relation (a relation is a set).
- There isn't a top-down order in the tuples (a relation is a set).
- There isn't a left-to-right order in the attributes of a relation (a tuple is a set). The name of the attribute must be used to choose.

2.1.1.- Difference Extension - Schema

Attention!: DBMSs understand a table as the definition of a relation and not as its content, which eventually changes by applying <i>operators.

2.1.1.- Relation Operators

Operators for the Relation Structure:

- INSERTION
- DELETION
- SELECTION
- PROJECTION
- UNION
- INTERSECTION
- DIFFERENCE
- CARTESIAN PRODUCT
- JOIN

Also part of the R.A.

2.1.1.- Insertion

 $\text{Insert}(\boldsymbol{R}, \boldsymbol{t}) = \boldsymbol{R} \cup \{ t \}$

R and *t* must have the same schema

Example:

Insert({ {(person_id, 12.345.678), (name, "Pepa Gómez"), (address, "Colón 15")}, { (person_id, 20.450.120), (name, "Juan Pérez"), (address, "Cuenca 20") }, { (name, "María Gutiérrez"), (person_id, 35.784.843) (address, "Reina 7")} },

{ (name, "José Abad"), (person_id, 12.904.569), (address, "Blasco Ibáñez 35)})

_

{ {(person_id, 12.345.678), (name, "Pepa Gómez"), (address, "Colón 15")},
 {(person_id, 20.450.120), (name, "Juan Pérez"), (address, "Cuenca 20") },
 { (person_id, 12.904.569), (name, "José Abad"), (address, "Blasco Ibáñez 35)},
 {(name, "María Gutiérrez"), (person_id, 35.784.843) (address, "Reina 7")}}

Question: How does insertion affect ...?:

degree:

cardinality:

2.1.1.- Deletion

 $Delete(\mathbf{R}, t) = \mathbf{R} - \{ t \}$

R and *t* must have the same schema

Example:

Delete({ {(person_id, 12.345.678), (name, "Pepa Gómez"), (address, "Colón 15")},
 {(person_id, 20.450.120), (name, "Juan Pérez"), (address, "Cuenca 20") },
 { (person_id, 12.904.569), (name, "José Abad"), (address, "Blasco Ibáñez 35)},
 {(name, "María Gutiérrez"), (person_id, 35.784.843) (address, "Reina 7")}}

{ (name, "José Abad"), (person_id, 12.904.569), (address, "Blasco Ibáñez 35)})

{ {(person_id, 12.345.678), (name, "Pepa Gómez"), (address, "Colón 15")},
 { (person_id, 20.450.120), (name, "Juan Pérez"), (address, "Cuenca 20") },
 { (name, "María Gutiérrez"), (person_id, 35.784.843) (address, "Reina 7")} },

Question: How does deletion affect ...?:

Degree:

Cardinality:

2.1.2.- Relational Algebra (R.A.)

R.A.: Set of unitary or binary operators which act upon relations

- □ They are *closed* operators: the result of applying any R.A. operator over one or two relations is a relation.
- Set operators:

union, intersection, difference, *and* Cartesian product.

• Properly relational operators:

```
selection,
projection,
division, and
join.
```

• Special operator: rename

2.1.2.- R.A. (Rename Operator)

$R((A_i, B_i), ..., (A_j, B_j))$

Let *R* be a relation of schema $\{(A_1, D_1), (A_2, D_2), ..., (A_n, D_n)\}$. Renaming in *R* the attributes $A_i, ..., A_j$ to $B_i, ..., B_j$, denoted as $R((A_i, B_i), ..., (A_j, B_j))$, produces a relation which contains each tuple in *R*, but changing their attribute names appropriately.

$$\begin{aligned} R((A_i, B_i), \dots, (A_j, B_j)) &= \\ & \{\{(A_1, v_1), \dots, (B_i, v_i), \dots, (B_j, v_j), \dots, (A_n, v_n)\} \mid \\ & \{(A_1, v_1), \dots, (A_i, v_i), \dots, (A_j, v_j), \dots, (A_n, v_n)\} \in R \end{aligned}$$

The schema of the resulting relation is the following:

$$\{(A_1, D_1), \dots, (B_i, D_i), \dots, (B_j, D_j), \dots, (A_n, D_n)\}.$$

Example:

Consider the following schema of a relational database:

River (rcode: rcode_dom, name: name_dom) Other_Rivers (rcode: rcode_dom, name: name_dom) Province (pcode: pcode_dom, name: name_dom) Crosses (pcode: pcode_dom, rcode: rcode_dom)

Question:

How would we rename the relation *Crosses* so that the attribute *pcode* becomes *ProvCode* and *rcode* becomes *RiverCode*?

2.1.2.- R.A. (Rename Operator)

The rename operator is applied over relations. NOT over relation schemas

Example:

Let *Crosses* be a relation represented by the following table:

Crosses								
pcode	rcode							
44	r2							
46	r2							
45	rl							
28	rl							
16	rl							

Crosses((**pcode**, **ProvCode**), (**rcode**, **RiverCode**)) =

Crosses								
ProvCode	RiverCode							
44	r2							
46	r2							
45	rl							
28	rl							
16	rl 30							

2.1.2.- R.A. (Set Operators)

$$\begin{array}{c|c} R & & \\ a \\ b \\ c \end{array} \times \begin{array}{c} x \\ y \end{array} \begin{array}{c} S \\ y \end{array} = \begin{array}{c|c} a & x \\ b & x \\ c & x \\ a \\ b \\ y \\ c \end{array} \begin{array}{c} y \\ y \end{array}$$

2.1.2.- R.A. (Union Operator)

 $R \cup S$

R and *S* must have the same schema

Let *R* and *S* be two compatible relations with schema $\{(A_1, D_1), ..., (A_n, D_n)\}$. The *union* of *R* and *S*, denoted by $R \cup S$, is a relation with the same schema as *R* and *S*, and is composed of all the tuples which belong to *R*, to *S*, or to both relations.

$$\mathbf{R} \cup \mathbf{S} = \{ t \mid t \in \mathbf{R} \lor t \in \mathbf{S} \}$$

The union is associative and commutative

2.1.2.- R.A. (Union Operator)

Example:

pcode	Name
44	Teruel
46	Valencia
16	Cuenca
12	Castellón

	pcode	Name						
	16	Cuenca						
ノ	45	Toledo	-					
	28	Madrid						
	12	Castelló						

pcode	Name		
44	Teruel		
46	Valencia		
16	Cuenca		
12	Castellón		
45	Toledo		
28	Madrid		
12	Castelló		

2.1.2.- R.A. (Difference Operator)

R-S

R and *S* must have the same schema

Let *R* and *S* be compatible relations with schema $\{(A_1, D_1), ..., (A_n, D_n)\}$. *The difference between R and S*, denoted by R - S, is a relation with the same schema as *R* and *S*, and is composed by all the tuples which belong to *R* and do not belong to *S*.

$$\mathbf{R} - \mathbf{S} = \{ t \mid t \in \mathbf{R} \land t \notin \mathbf{S} \}$$

The difference is neither associative nor commutative.

2.1.2.- R.A. (Difference Operator)

Example:

pcode	Name
44	Teruel
46	Valencia
16	Cuenca
12	Castellón
45	Toledo
28	Madrid
12	Castelló

	pcode	Name						
	16	Cuenca						
_	45	Toledo						
	28	Madrid						
	12	Castelló						

	pcode	Name		
	44	Teruel		
	46	Valencia		
	12	Castellón		

2.1.2.- R.A. (Intersection Operator)

 $R \cap S$

R and S must have the same schema

Let *R* and *S* be two compatible relations with schema $\{(A_1, D_1), \ldots, (A_n, D_n)\}$. The *intersection* of *R* and *S*, denoted by $R \cap S$, is a relation with the same schema as *R* and *S*, and is composed by all the tuples which belong to *R* and to *S*.

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

The intersection is associative and commutative.

2.1.2.- R.A. (Intersection Operator)

Example:

pcode	Name		pcode	Name			
44	Teruel		16	Cuenca		pcode	Name
46	Valencia	\cap	45	Toledo	=	16	Cuenca
16	Cuenca		28	Madrid		10	Cuencu
12	Castellón		12	Castelló			

2.1.2.- R.A. (Cartesian Product Operator)

$R \times S$ R and S cannot have attribute names in common

Let *R* and *S* be two relations with schemas $\{(A_1, D_1), \ldots, (A_n, D_n)\}$ and $\{(B_1, E_1), \ldots, (B_m, E_m)\}$ respectively such that they do not have any attribute name in common. The *Cartesian product* of *R* and *S*, denoted by $R \times S$, is a relation whose schema is the union of the schemas from *R* and *S*, and is composed by all the tuples which can be constructed by combining one from *R* and one from *S*.

$$R \times S = \{ \{(A_1, v_1), \dots, (A_n, v_n), (B_1, w_1), \dots, (B_m, w_m)\} | \\ \{(A_1, v_1), \dots, (A_n, v_n)\} \in R \text{ and } \{(B_1, w_1), \dots, (B_m, w_m)\} \in S \}$$

The schema of the resulting relation from $R \times S$ is $\{(A_1, D_1), \dots, (A_n, D_n), (B_1, E_1), \dots, (B_m, E_m)\}$. The Cartesian product is associative and commutative.

2.1.2.- R.A. (Cartesian Product Operator)

Example:						pcode	ProvName	rcode	name
						44	Teruel	r1	Sénia
						44	Teruel	r2	Túria
		-				44	Teruel	r3	Xúquer
pcode	ProvName					46	Valencia	r1	Sénia
44	Teruel		rcode	name		46	Valencia	r2	Túria
46	Valencia		r1	Sénia		46	Valencia	r3	Xúquer
16	Cuenca		r2	Túria	=	16	Cuenca	r1	Sénia
10	Castallón		r3	Xúquer		16	Cuenca	r2	Túria
12	Castelloll					16	Cuenca	r3	Xúquer
						12	Castellón	r1	Sénia
						12	Castellón	r2	Túria
						12	Castellón	r3	Xúquer

2.1.2.- R.A. (Relational Operators)

Selection

2.1.2.- R.A. (Projection Operator)

$R[A_i, A_j, \ldots, A_k]$

Let *R* be a relation with schema $\{(A_1, D_1), ..., (A_n, D_n)\}$ and let $\{A_i, A_j, ..., A_k\}$ be a subset of the attribute names in *R* with *m* elements $(1 \le m \le n)$. The *projection* of *R* over $\{A_i, A_j, ..., A_k\}$, denoted by $R[A_i, A_j, ..., A_k]$, is a relation which is defined as follows:

$$R[A_{i}, A_{j}, ..., A_{k}] = \{\{(A_{i}, v_{i}), (A_{j}, v_{j}), ..., (A_{k}, v_{k})\} | \\ \exists t \in R \text{ such that } \{(A_{i}, v_{i}), (A_{j}, v_{j}), ..., (A_{k}, v_{k})\} \subseteq t \}$$

The relation schema of $R[A_i, A_j, ..., A_k]$ is

$$\{(A_i, D_i), (A_j, D_j), \dots, (A_k, D_k)\}.$$
 41

2.1.2.- R.A. (Projection Operator)

Example:

le:	person_id	Name	Address		
	20.450.120	Juan Pérez	Cuenca 20		
Let R be	12.904.569	José Abad	Blasco Ibáñez 35		
	35.784.843	María Gutiérrez	Reina 7		
	12.345.678	Pepa Gómez	Colón 15		

R[person :	id, address	=
------------	-------------	---

person_id	Address		
20.450.120	Cuenca 20		
12.904.569	Blasco Ibáñez 35		
35.784.843	Reina 7		
12.345.678	Colón 15		

2.1.2.- R.A. (Join Operator)

$R \triangleright \triangleleft S$

Let *R* and *S* be two relations with schemas $\{(A_1, D_1), \ldots, (A_n, D_n), (B_1, E_1), \ldots, (B_m, E_m)\}$ and $\{(B_1, E_1), \ldots, (B_m, E_m), (C_1, F_1), \ldots, (C_p, F_p)\}$, respectively, in such a way that B_1, \ldots, B_m are the common attributes in both schemas. The *join* of *R* and *S*, denoted by $R \triangleright \triangleleft S$, is a relation which contains all the tuples which can be constructed by combining a tuple from *R* with another from *S* such that they have the same value for every common attribute name.

$$R \triangleright \triangleleft S = \{\{(A_1, v_1), \dots, (A_n, v_n), (B_1, w_1), \dots, (B_m, w_m), (C_1, y_1), \dots, (C_p, y_p)\} | \\ \{(A_1, v_1), \dots, (A_n, v_n), (B_1, w_1), \dots, (B_m, w_m)\} \in R \land \\ \{(B_1, w_1), \dots, (B_m, w_m), (C_1, y_1), \dots, (C_p, y_p)\} \in S \}$$

The join operator is associative and commutative. The resulting relation schema is $\{(A_1, D_1), \dots, (A_n, D_n), (B_1, E_1), \dots, (B_m, E_m), (C_1, F_1), \dots, (C_p, F_p)\}$.

2.1.2.- R.A. (Join Operator)

Example:

		_	pcode	rcode			
pcode	name		44	r1	pcode	name	rcode
44	Teruel		46	r2	44	Teruel	r1
46	Valencia	\bowtie	30	r2	46	Valencia	r2
16	Cuenca		20	r1	44	Teruel	r3
12	Castellón		44	r3	12	Castellón	r1
			12	r1	12	Casterion	11

2.1.2.- R.A. (Join Operator)

More examples:

pcode	Name		ncode	rcode					
44	Terol								
46	València		43	rl	=	pcode	Name	rco	de
16	Conca	, ,	50	r2					
12	Castelló		30	r2		pcode	Name	scode	rcode
		1 -			ł	44	Terol	44	r1
pcode	Name		scode	rcode		44	Terol	50	r2
44	Terol		44	r1		46	València	44	r1
46	València		50			46	València	50	r2
16	Conca		30	ſZ	1	16	Conca	44	r1
		-				16	Conca	50	r2

2.1.2.- R.A. (Division Operator)

$R \div S$

Let *R* and *S* be two relations with schemas $\{(A_1, D_1), \dots, (A_n, D_n), (B_1, E_1), \dots, (B_m, E_m)\}$ and $\{(B_1, E_1), \dots, (B_m, E_m)\}$ respectively. The *division* of *R* by *S*, denoted by $R \div S$, is a relation defined as follows:

$$R \div S = \{ \{(A_1, v_1), \dots, (A_n, v_n)\} \mid \\ \forall s \in S \ (s = \{(B_1, w_1), \dots, (B_m, w_m)\} \rightarrow \\ \exists t \in R \text{ and } t = \{(A_1, v_1), \dots, (A_n, v_n), (B_1, w_1), \dots, (B_m, w_m)\}) \}$$

The schema of $R \div S$ is $\{(A_1, D_1), \dots, (A_n, D_n)\}$. The division operator is neither associative nor commutative.

46

2.1.2.- R.A. (Selection Operator)

R WHERE F

Let *R* be a relation of schema $\{(A_1, D_1), \dots, (A_n, D_n)\}$. The *selection* in *R* with respect to the condition *F*, denoted by *R* WHERE *F*, is a relation of the same schema *R*, which is composed by all the tuples in *R* such that condition *F* holds.

R WHERE $F = \{ t \mid t \in R \text{ and } F(t) \text{ has value } true \}$

What is the condition F(t) like?

How is F(t) evaluated?

What is the condition *F* like?

Types of <u>Comparison</u>:

- $\text{Null}(A_i)$
- $A_i \alpha A_j$
- $A_i \alpha a$

where α is a comparison operator $(\langle, \rangle, \leq, \geq, =, \neq)$, A_i and A_j are attribute names and *a* is a value from the domain associated with attribute A_i , different from the null value.

The <u>Conditions</u> are constructed from comparisons, using parentheses and logical operators (\lor, \land, \neg) .

How is the condition F(t) evaluated?

Null Value \Rightarrow Need for a <u>Trivalued Logic</u> {T, F, undefined}:

- if *F* is of the form A_i α A_j then *F*(t) is evaluated as undefined if at least one of A_i or A_j has null value in t; otherwise it is evaluated to the certainty value of the comparison t(A_i) α t(A_j);
- if *F* is of the form $A_i \alpha a$ then F(t) is evaluated as undefined if A_i has null value in *t*; otherwise it is evaluated to the certainty value of the comparison $t(A_i) \alpha a$; and
- if F is of the form null(A_i) then F(t) is evaluated as true if A_i has null value in t; otherwise it is evaluated to false.

2.1.2.- R.A. (Selection Operator)

Trivalued Logic: (Truth tables for the logical connectives \land , \lor and \neg)

G	Н	$\mathbf{F} = \mathbf{G} \wedge \mathbf{H}$	$\mathbf{F} = \mathbf{G} \lor \mathbf{H}$
false	false	false	false
undefined	false	false	undefined
true	false	false	true
false	undefined	false	undefined
undefined	undefined	undefined	undefined
true	undefined	undefined	true
false	true	false	true
undefined	true	undefined	true
true	true	true	true

G	$\mathbf{F} = \neg \mathbf{G}$
false	true
undefined	undefined
true	false

2.1.2.- R.A. (Selection Operator)

Example:	person_id	name	address
	20450120	Juan Pérez	Cuenca 20
Lat P ha	12904569	José Abad	Blasco Ibáñez 35
Let K Ue	?	María Gutiérrez	Reina 7
_	12345678	Pepa Gómez	Colón 15

Operations:

R where \neg (name = "Juan Pérez")

$$\land$$
 (person_id > 12500500) =

person_id	name	address
12904569	José Abad	Blasco Ibáñez 35

R where ¬ (person	id > 12500500) =
-------------------	------------------

person_id	name	address
12345678	Pepa Gómez	Colón 15

51

R where $(person_id \le 12500500) \lor (person_id \ge 12500500) = R$?

2.1.2.- Summary of Operators

• INSERTION • DELETION • RENAMING SELECTION • PROJECTION • UNION INTERSECTION • DIFFERENCE CARTESIAN PRODUCT • JOIN • DIVISION

- Relational Algebra

- For each object in reality about which we want to have information we define a relation whose attributes denote the properties of interest for these objects (code, name, ...) in such a way that each tuple which is present in this relation must be interpreted as a particular instance of an object;
- In order to represent associations between objects we use explicit references through attributes which identify each object. 53

EXAMPLE 1:

- Reality: Dishes and menus in a restaurant.
- Database schema:

Menu(menu_name: d4, price: d2)

Is_composed_of(dish_name: d5, menu_name: d4)

Dish(dish_name: d5, calories: d6, wine_id: d8, cook_name:d7)

Wine(wine_id: d8, wine_name:d11, year: d13, colour:d14)

Cook(name:d7, age: d9, country:d10)

Intervenes(ing_name: d1, dish_n:d5, quantity:d15)

Ingredient(ing_name: d1, price: d2, description:d3)

CARDINALITY/MULTIPLICITY between two *objects* A and B: Generic Notation

 $R(A(\min_A, \max_A), B(\min_B, \max_B))$

- Each tuple in *A* requires a min_A of corresponding tuples in *B*, but at most max_A.
- Each tuple in *B* requires a min_{*B*} of corresponding tuples in *A*, but at most max_{*B*}.

Example:

A wine may appear in many dishes but a dish must have one and only one wine.

Between two relations only one maximum can be greater than one.

Be careful! This implies that:

In the relational model, the cardinalities several to several (many to many) can only be obtained through an intermediate table.

Example: a dish may have many ingredients. Similarly, an ingredient may appear in many dishes. *We need the table: intervenes.* 56

INTUITIVE REPRESENTATION (Ms. Access)

If this cardinality is ∞ , then it corresponds to $(0, \infty)$ If this cardinality is 1, then it corresponds to (0, 1)

EXAMPLE 1:

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT:

- Obtain the name of the dishes with less than 2,000 calories:
- Obtain the name of the cook of the dishes with white wine.

• Obtain all the information from the dishes cooked by Russian cooks:

2.1.- Exercises: R.A. Queries

EXAMPLE 2. RESTAURANT (Contd.):

• Obtain the age of the cook whose dishes only have old vintage wines (year < 1982).

• Obtain the name of the menus without egg:

• Obtain the name of the most expensive ingredient: