
Where are we?

• Week -4: Data definition (Creation of the schema)

• Week -3: Data definition (Triggers)

• Week -2: More SQL queries• Week -2: More SQL queries

• Week -1: Transactions and concurrency in ORACLE.

But don’t forget to work on SQL queries!

Lab III. Part B

SQL: data definition

Database Laboratory

Objectives

• Present the data definition language in SQL

–Present the syntax for creating tables

– Present the syntax for modifying table definitions– Present the syntax for modifying table definitions

– Present the syntax for creating views

–Present the syntax for granting authorisations

– Present the syntax for the creation of activity rules (triggers)

• All this in Oracle

SQL commands for defining relational schemas:

• create schema: gives name to a relational schema and declares the user who is

the owner of the schema.

• create domain: defines a new data domain.

SQL as a data definition language (DDL)

• create table: defines a table, its schema and its associated constraints.

• create view: defines a view or derived relation in the relational schema.

• create assertion: defines general integrity constraints.

• grant: defines user authorisations for the operations over the DB objects.

All these commands have the opposite operation (DROP / REVOKE) and modification

(ALTER).

ORACLE

ORACLE

ORACLE

Schema Definition (SQL)

create schema [schema] [authorization user]

[list_of_schema_elements];

A schema element can be any of the following:

• Domain definition.

• Table definition.

• View definition.

• Constraint definition.

• Authorisation definition.

Removal of a relational schema definition:

drop schema schema {restrict | cascade};

Not in

ORACLE

Domain Definition (SQL)

create domain domain [as] datatype

[default {literal | system_function | null }]

[domain_constraint_definition];

System functions:System functions:

– user

– current_user

– session_user

– current_date

– current_time

– current_timestamp

Not in

ORACLE

Domain Definition (SQL)

A domain can be associated with a collection of constraints:

[constraint constraint]

check (conditional_expression)

[not] deferrable[not] deferrable

• conditional_expression can express any condition to be met by every value

in the domain (must be TRUE or UNDEFINED)

• deferrable indicates that (if set to deferred and not to immediate) the

system must check the constraint at the end of the current transaction.

• not deferrable indicates that the system must check the constraint after

each atomic update instruction on the database.

Domain Definition (SQL). Example

CREATE DOMAIN angle AS FLOAT

DEFAULT 0

CHECK (VALUE >= 0 AND VALUE < 360)CHECK (VALUE >= 0 AND VALUE < 360)

NOT DEFERRABLE;

Removal of a domain:

drop domain domain [restrict | cascade]

Table Definition (SQL).

CREATE TABLE table

column_definition_list

[table_constraint_definition_list];

The definition of a table column is done as follows:

column {datatype | domain}

[default {literal | system_function | null }]

[column_construct_definition_list]

The constraints that can be defined over the columns are the following:

• not null: not null value constraint.

• Constraint definition for single column PK, Uni, FK.
• General constraint definition with the check clause.

Table Definition (SQL).

The clause for defining table constraints is the following one:

[constraint constraint]

{ primary key (column_list)

| unique (column_list)

| foreign key (column_list)| foreign key (column_list)

references table[(column_list)]

[match {full | partial}]

[on update [cascade |

set null | set default | no action]]

[on delete [cascade |

set null | set default | no action]]

| check conditional_expression }

[constraint_check]
- Must be TRUE or UNDEFINED.

- Cannot include subqueries or references to other tables.

* NOT IN ORACLE

* NOT IN ORACLE

* NOT IN ORACLE

* NOT IN ORACLE

Default value: the operation is not allowed

Example: Provider-Piece-Supply

piece_code_d: string(4)

id_d: integer (positive)

Provider(id: id_d, name: string(40), address: string(25), city: string(30))

PK: {id}

NNV: {name}

Piece(code: piece_code_d, desc: string(40), colour: string(20), weight: real)Piece(code: piece_code_d, desc: string(40), colour: string(20), weight: real)

PK: {code}

Supply (id: id_d, code: piece_code_d, price: real)

PK: {id, code}

FK: {id} → Provider

FK: {code} → Piece

Integrity constraints:

R1) Px: Piece ∀Px: Piece (Px.colour=’red’→ Px.weight>100)

R2) Px: Piece, Sx: Supply ∀Px: Piece (∃Sx: Supply (Sx.code=Px.code))

Example: Provider-Pieces-Supply (SQL)

create schema Store
authorization Joe
create domain piece_code_d as char(4)
create domain id_d as integer check value>0
create table Provider (id id_d primary key,

name varchar(40) not null,
address char(25),
city char(30))city char(30))

create table Piece (code piece_code_d primary key,
desc varchar(40),
colour char(20),
weight float,
constraint r1 check (colour<>’red’ or weight>100))

create table Supply (id id_d,
code piece_code_d references Piece,
price float,
primary key (id, code),
foreign key (id) references Provider(id));

⇐ R1

and R2?

Example: Provider-Pieces-Supply (Oracle)

In Oracle

create table Provider (id number primary key,
name varchar(40) not null,
address char(25),address char(25),
city char(30));

create table Piece (code number primary key,
desc varchar(40),
colour char(20),
weight float,
constraint r1 check (colour<>’red’ or weight>100));

create table Supply (id number,
code number references Piece,
price float,
primary key (id, code),
foreign key (id) references Provider(id);

⇐ R1

and R2?

Table Definition (SQL). MATCH

R(FK)�S(UK)

• complete (match full): in a tuple of R all the values must have a null value or

none of them. In the latter case, there must exist a tuple in S taking the same

values for the attributes in UK as the values in the attributes of FK.

• partial (match partial): if in a tuple of R one or more attributes of FK do not

have a non-null value, then there must exist a tuple in S taking the same values

for the attributes of UK as the values in the non-null attributes of FK.

• weak (the clause match is not included): if in a tuple of R all the values for the

attributes of FK have a non-null value, then there must exist a tuple in S taking

the same values for the attributes of UK as the values in the attributes of FK.

ORACLE

Table Definition Modification (SQL).

In order to modify the definition of a table:

alter table base_table

{add [column] column_definition

| alter [column] column

With ORACLE some things

are different
| alter [column] column

{set default {literal | system_function | null }

| drop default}

| drop [column] column {restrict | cascade} };

To remove a table from the relational schema:

drop table base_table {restrict | cascade}; In ORACLE is CASCADE

CONSTRAINTS

View

A view is an object which allows the SQL language to define external

schemas:

– A view is a virtual table (it has no correspondence at the

physical level).

– It can be handled as a basic table.

– A view is defined in terms of other tables or views.

– The updates can be transferred to the original tables (with

certain limitations).

• The syntax for the definition of views in SQL is as follows:

CREATE | REPLACE VIEW view [(column_list)]

AS table_expression [with check option]

where:

Views in SQL.

– CREATE VIEW is the command.– CREATE VIEW is the command.

– view is the name of the virtual table which is being defined.

– (column_list) are the names of the table attributes (it is optional):

• If not specified, name coincides with the names of the attributes which

return the table_expression.

• It is compulsory if some attribute in table_expression is the result of an

aggregation function or an arithmetic expression.

• The syntax for the creation of views in SQL is as follows:

CREATE | REPLACE VIEW view [(column_list)]

AS table_expression [with check option]

where:

Views in SQL.

– table_expression is a SQL query whose result will include the content of the view.– table_expression is a SQL query whose result will include the content of the view.

– WITH CHECK OPTION is optional and must be included if the view is to be

updated in an appropriate way.

– To remove a view we use the command:

– DROP VIEW view [restrict | cascade];

Views in SQL (Examples).

• Given the following database relation:

Cook(name: varchar, age: number, country: varchar)

Define a view with only the French cooks:
Check Option ensures that cooks who are

Define a view with the average age of the cooks grouped by country:

Check Option ensures that cooks who are

not French cannot be added to the viewCREATE VIEW French AS

SELECT * FROM Cook WHERE country = “France”

WITH CHECK OPTION

CREATE VIEW Report(country, avg_age) AS

SELECT country, AVG(age) FROM Cook GROUP BY country

Reasons why a view is NOT updatable:

• It contains set operators (UNION, INTERSECT,…).

Views in SQL (updatable views).

• It contains the DISTINCT operator

• It contains aggregated functions (SUM, AVG, ..)

• It contains the clause GROUP BY

View over a base table:

• The system will translate the update over the view to the corresponding
action to the base relation.

Views in SQL (updatable views).

action to the base relation.

• Provided that no integrity constraint defined on the relation is violated.

View over a join of two relations:

• The update can only modify one of the two base tables.

• The update will modify the base relation which complies with the property of

Views in SQL (updatable views).

• The update will modify the base relation which complies with the property of
key preservation (the table whose primary key could also be the primary key of

the view).

• Provided that no integrity constraint defined on the affected relation is

violated.

Example:

• Given the following relations:

PERSON(id: id_dom, name: name_dom, age: age_dom)

PK:{id}

HOUSE(house_code: code_dom, id: id_dom, addr: addr_dom, rooms: number)

PK:{house_code} FK:{id} � PERSON

Views in SQL (updatable views).

PK:{house_code} FK:{id} � PERSON

• Given the following view which is defined over these relations:

CREATE VIEW ALL_HOUSE AS

SELECT * FROM PERSON NATURAL JOIN HOUSE

Can we modify the address of a house in ALL_HOUSE?

Can we modify the name of the HOUSE owner?

Yes, the PK in HOUSE could work as the PK in ALL_HOUSE

No, the update is ambiguous

Constraint definition (SQL)

create assertion constraint

check (conditional_expression)

[constraint_check];

The condition must be TRUE.

Example: Provider-Pieces-Supply (SQL)

Constraint R2 :

R2) Px: Piece, Sx: Supply ∀Px : Piece (∃Sx : Supply(Sx) (Sx.code=Px.code))

is defined through a general constraint:

create assertion R2 check

not exists(select * from Piece P

where not exists(select *

from Supply S

where P.code=S.code));

Removal of a constraint

DROP ASSERTION constraint

Notion of trigger.

A trigger is a rule which is automatically activated by

certain events and executes a particular action.certain events and executes a particular action.

Form of an activity rule:

event - condition - action

action which the system executes as a response of the happening of an

event when a certain condition is met:

Event-condition-action rules.

event when a certain condition is met:

• event: update operation

• condition: logical expression in SQL. The action will only be
executed if this condition is true. If the condition is not specified,

the condition is assumed to be true.

• action: a procedure written in a programming language which
include manipulation instructions to the DB.

Define the active behaviour of a database system:

• Check of general integrity constraints

Restoration of consistency

Applications of triggers.

• Restoration of consistency

• Definition of operational rules in the organisation

• Maintenance of derived information

Rule definition::=

{CREATE | REPLACE} TRIGGER rule_name

{BEFORE |||| AFTER |||| INSTEAD OF} event [events_disjunction]

ON {relation_name | view_name}
[[REFERENCING OLD AS reference_name

Triggers in SQL.

[[REFERENCING OLD AS reference_name

[NEW AS reference_name]]

[FOR EACH {ROW | STATEMENT} [WHEN (condition)]]

PL/SQL block

events_disjunction ::= OR event [events_disjunction]

event ::= INSERT |||| DELETE |||| UPDATE [OF attribute_name_list]

Events:

{BEFORE |||| AFTER |||| INSTEAD OF} event [events_disjunction]

ON {relation_name | view_name}

Triggers in SQL.

events_disjunction ::= OR event [events_disjunction]

event ::=

INSERT |||| DELETE |||| UPDATE [OF attribute_name_list]

Events:

Event parameterisation:

– The events in the rules defined with FOR EACH ROW are parameterised

– Implicit parameterisation:

• event INSERT or DELETE: n (n being the degree of the relation)

Triggers in SQL.

• event INSERT or DELETE: n (n being the degree of the relation)

• event UPDATE: 2*n

– Name of the parameters:

• event INSERT: NEW

• event DELETE: OLD

• event UPDATE: OLD and NEW

– They can be used in the condition of the rule

– They can be used in the PL/SQL block

BEFORE

FOR EACH STATEMENT FOR EACH ROW

The rule is executed once before the

execution of the update operation

The rule is executed once before the

update of each tuple which is affected

by the update operation

Triggers in SQL.

AFTER

The rule is executed once after the

execution of the update operation

The rule is executed once after the

update of each tuple which is affected

by the update operation

CONDITIONS

WHEN (condition)

–Logical expression with a similar syntax as the condition of the ‘WHERE’

clause of the SELECT instruction

Triggers in SQL.

clause of the SELECT instruction

– It cannot contain queries or aggregated functions

– It can only refer to the parameters in the event

ACTIONS

PL/SQL block

– block written in the programming language Oracle PL/SQL

–Manipulation statements over the DB: INSERT, DELETE, UPDATE,

Triggers in SQL.

–Manipulation statements over the DB: INSERT, DELETE, UPDATE,

SELECT ... INTO ...

– Program statements: assignment, selection, iteration

–Error handling statements

– Input/output statements

Rule language:

– Definition: CREATE TRIGGER rule_name ...

– Removal: DROP TRIGGER rule_names

– Modification: REPLACE TRIGGER rule_name ...

Triggers in SQL.

– Modification: REPLACE TRIGGER rule_name ...

– Recompilation: ALTER TRIGGER rule_name COMPILE

– Disable/enable rule: ALTER TRIGGER rule_name [ENABLE | DISABLE]

– Disable/enable all the rules defined over a relation:

ALTER TABLE relation_name [{ENABLE | DISABLE} ALL TRIGGERS]

The constraint R2 such as this

R2) Px: Piece, Sx: Supply ∀Px : Piece (∃Sx : Supply (Sx.code=Px.code))

can be defined through the following assertion:

create assertion R2 check

Triggers in SQL (Example).

not exists (select * from Piece P

where not exists (select *

from Supply S

where P.code=S.code));

How can this constraint be controlled through triggers?

We must detect the events which might affect the I.C. :

table, operation, attribute

Supply, Deletion, -

Supply, Update, code

Triggers in SQL (Example).

Supply, Update, code

Piece, Insertion, -

Then we must define triggers to control these events.

CREATE TRIGGER T1

AFTER DELETE ON Supply OR UPDATE OF code ON Supply

FOR EACH ROW

DECLARE

N NUMBER;

Triggers in SQL (Example).

N NUMBER;

BEGIN

SELECT COUNT(*) INTO N

FROM Supply S

WHERE :old.code = S.code;

IF N=0 THEN

RAISE_APPLICATION_ERROR(-20000, ‘We can’t delete this supply,

otherwise the piece would remain without supplies.’);

END IF;

END;

CREATE TRIGGER T2

AFTER INSERT ON Piece

FOR EACH ROW

DECLARE N NUMBER;

BEGIN

Triggers in SQL (Example).

BEGIN

SELECT COUNT(*) INTO N

FROM Supply S WHERE :new.code = S.code;

IF N=0 THEN

RAISE_APPLICATION_ERROR(-20000, ‘We cannot

insert a new piece, because this piece has no supplies.

Insert the two tuples (piece and supply)

inside a transaction by disabling this trigger first.’);

END IF;

END;

Privilege Definition (SQL).

An user can only perform operations on an object (table or view) if the

user has the corresponding privilege.

The operation we can grant privileges on are:

• update (the columns must be specified)• update (the columns must be specified)

• insert (some columns can be specified)

• delete

• select

• create view: the user needs the privilege over the table

expression that makes up the view (the SELECT instruction in

the view).

Privilege Definition (SQL).

grant {all | select | insert [(column_commalist)] |

delete | update [(column_commalist)]}

on object to {user_commalist | public }

[with grant option][with grant option]

Removing a privilege

revoke [grant option for]

{all | select | insert [(column_commalist)] |

delete | update [(column_commalist)]}

on object to {user_commalist | public }

{restrict | cascade}

In ORACLE some details are

different

EXERCISE

FIRST SESSION (everything except “total_loan”):

1. DESIGN (on a paper sheet) THE DATABASE:

– Ascertain the tables which are required to express the

library information.

– Add the constraints (PK, FK, NNV) you think are needed.– Add the constraints (PK, FK, NNV) you think are needed.

– Add the specific constraints expressed by the problem.

2. WRITE DOWN THE CORRESPONDING SQL INSTRUCTIONS TO

CREATE THE SCHEMA IN WORDPAD (or other text editor):

3. START THE CREATION OF THE SCHEMA IN ORACLE.

4. CHECK THAT THE SCHEMA HAS BEEN CREATED

5. INSERT AND UPDATE SOME INFORMATION TO CHECK THE

CONSTRAINTS

EXERCISE

SECOND SESSION:

1. THINK ABOUT HOW TO MAINTAIN THE ATTRIBUTE “Total_loans” .

2. WRITE DOWN THE EVENTS THAT AFFECT “Total_loans”

3. WRITE DOWN THE OPERATIONS THAT SHOULD BE DONE IN EACH

EVENT.EVENT.

4. WRITE DOWN THE CORRESPONDING TRIGGERS TO CREATE THE

SCHEMA IN WORDPAD (or other text editor):

5. START THE CREATION OF THE TRIGGERS IN ORACLE.

• If the trigger is created “con errores de compilación”, use the

instruction “SHOW ERRORS” to see the errors, before going on.

6. CHECK THAT THE TRIGGERS HAVE BEEN CREATED

7. INSERT AND UPDATE SOME INFORMATION TO CHECK THAT THE

TRIGGERS MAINTAIN THE ATTRIBUTE “Total_loans”.

