

Introduction to Database
(“Bases de Datos”)

Escuela Universitaria de Informática
Facultad de Informática

Lab exercise nº 2: Representation of reality with the

relational data model.

1. Introduction ...2

2.General overview of the schemas we will work with ..2

3. Questions about the proposed schemas ...13

Departamento de Sistemas Informáticos y Computación

year 2007/2008

Departamento de Sistemas Informáticos y Computación

1. Introduction

The goal of this session is to learn some guidelines for the representation of information
systems with relational schemas, as well as to get some practice in the interpretation of simple
relational schemas.

An information system based on the real world includes several objects with their attributes
and inter-relationships. In order to obtain a relational schema which represents an information
system, we must take into account that:

• For each object in the real world about which we want to express some kind of
information, we must define a relation whose attributes denote the most significant
properties of the object (code, name, ...) in such a way that each tuple in that relation has
to be interpreted as a particular instance of that object;

• To represent the associations between objects, we use explicit references through
attributes which identify each object. In some cases, new relations representing facts
(predicates) in the real world have to be added in order to express these associations.

The relational schema obtained in this way must comply with the following modelling
guidelines:

• To satisfy the information system requirements.

• To avoid redundancies

• To adapt to data structures of the data model (in our case the relational model)

2. General Overview of the schemas we will work with

Next we will present some information systems and the relational schemas that represent them:

For the several schemas, we use the following notation:
 PK: Primary Key / CP: Clave Primaria: the set of attributes with this constraint form the primary

key.

 UNI: Uniqueness constraint / UNI: Restricción de unicidad: the set of attributes with this constraint
cannot be repeated.

 FK: Foreign Key / CAj: Clave Ajena: the set of attributes with this constraint refer to corresponding
attributes of the referred relation.

 NNV: Not Null Value / NNV: Valor no nulo: the set of attributes with this constraint cannot be null.

Departamento de Sistemas Informáticos y Computación

Information system: GEOGRAPHIC INFORMATION

Information Requirements

Objects: SEA, RIVER, PROVINCE

For each SEA: code, name, details and rivers which flow into it.

For each RIVER: code, name, length, sea it flows into and provinces it crosses, also indicating
the kilometres through the province.

For each PROVINCE: code, name, extension, boundaries with other provinces and rivers that
cross the province.

Relational Schema

• RIVER (rcod: d_rcod, name: d_nom, length: d_long, mcod: d_mcod)
 PK: {rcod}
 FK: {mcod} → SEA

• SEA (mcod: d_mcod, name: d_nom, details: d_det)
 PK: {mcod}

• PROVINCE (pcod: d_pcod, name: d_nom, extension: d_ext)
 PK: {pcod}

• CROSSES (rcod: d_rcod, pcod: d_pcod, km: d_km)
 PK: {pcod,rcod}
 FK: {pcod} → PROVINCE
 FK: {rcod} → RIVER

• LIMITS_WIH (pcod1: d_pcod, pcod2: d_pcod)
 PK: {pcod1,pcod2}
 FK: {pcod1} → PROVINCE
 FK: {pcod2} → PROVINCE

RIVER
rcod
name
length
mcod

SEA
mcod
name
details

PROVINCE
pcod
name
extension

CROSSES
rcod
pcod
km

LIMITS_WITH
pcod1
pcod2

Departamento de Sistemas Informáticos y Computación

Information system: COMPANY

Information requirements

Objects: SUPPLIER, PIECE, PROJECT, ORDER

For each SUPPLIER: code, name, city and order for each piece (indicating the project in which
it is used).

For each PIECE: code, name, colour, weight, city where it is manufactured and the suppliers
who supply some projects.

For each PROJECT: code, name, city and pieces bought to the suppliers of that project.

Relational Schema

• SUPPLIER (vcod: d_vcod, name: d_nom1, city: d_ciu)
 PK:{vcod}

• PIECE(zcod: d_zcod, name: d_nom2, colour: d_colour, weight: d_weight, city: d_ciu)
 PK:{zcod}

• PROJECT(ycod: d_ycod, name: d_nom3, city: d_ciu)
 PK: {ycod}

• ORDER (vcod: d_vcod, zcod: d_zcod, ycod: d_ycod, quant: d_quant)
 PK:{vcod, zcod, ycod}
 FK:{vcod} → SUPPLIER
 FK:{zcod} → PIECE
 FK:{ycod} → PROJECT

SUPPLIER
vcod
name
city

PIECE
zcod
name
colour
weight
city

PROJECT
ycod
name
city

ORDER
vcod
zcod
ycod
quant

Departamento de Sistemas Informáticos y Computación

Information system: LIBRARY 1

Information requirements

Objects: USER, BOOK

For each USER: code, name, address and the books s/he has read.

For each BOOK: code, title, author, topic and the users who have read it.

We also want to establish a hierarchy between different topics.

Relational Schema

• USER (scod: d_scod, name: d_nom, address: d_dir)
 PK: {scod}

• BOOK (lcod: d_lcod, title: d_tit, author: d_author, topic: d_topic)
 PK: {lcod}
 FK:{topic} → topic

• HAS_READ (scod: d_scod, lcod: d_lcod)
 PK: {scod, lcod}
 FK: {scod} → user
 FK: {lcod}→ book

• TOPIC (topic: d_topic, description: d_desc)
 PK: {topic}

• FIELD (topic: d_topic, subtopic: d_topic)
 PK:{topic, subtopic}
 FK:{topic} → topic
 FK:{subtopic} → topic

USER
scod
name
address

BOOK
lcod
title
author
topic

HAS_READ
lcod
scod

TOPIC
topic
description

FIELD
topic
subtopic

Departamento de Sistemas Informáticos y Computación

Information system: RECORD COLLECTION

Information requirements

Objects: COMPOSER, CONDUCTOR, WORK, DISC

For each COMPOSER: name, birth year, nationality and works s/he has composed.

For each CONDUCTOR: name, birth year, short biography and which works are conduced by
him or her in the discs.

For each WORK: code of the work, title, year of its composition and its author, as well as the
discs which include it.

For each DISC: reference number, name, publishing year, publishing company and works
which contain (includes information about the conductor of the particular interpretation).

Relational Schema

• COMPOSER (comp_name: d_name, year: d_year, country: d_country)
PK: {comp_name}

• CONDUCTOR (cond_name: d_name, year: d_year, biography: d_bio)
PK: {cond_name}

• WORK (word_cod: d_work_cod, title: d_title, year: d_year, comp_name: d_name)
PK: {work_cod}
FK: {comp_name } → COMPOSER

• DISC (ref: d_ref, name: d_name, year: d_year, company: d_comp)
PK: {ref}

• IS_IN (workd_cod: d_work_cod, ref: d_ref, cond_name: d_name)
PK: {work_cod, ref}
FK: {work_cod} → WORK
FK: {ref} → DISC
FK: {cond_name} → CONDUCTOR

WORK
work_cod
title
year
comp_name

COMPOSER
comp_name
year
country

DISC
ref
name
company

IS_IN
work_cod
ref
cond_name

CONDUCTOR
cond_name
year
biography

Con formato: Inglés (Reino
Unido)

Departamento de Sistemas Informáticos y Computación

Information system: TRAVEL AGENCY

Information requirements

Objects: TRIP, GUIDE, DRIVER, CITY
For each TRIP: code, date, price, assigned guide, drivers and cities which are visited.
For each GUIDE: dni1, name, language spoken, trips in which she or he participates.
For each DRIVER: dni, name, age, gender, trips in which s/he participates.
For each CITY: name city, number of inhabitants, brief historical description.

Relational Schema

• TRIP(code: d_code, date: d_date, price: d_pri, dni_g: d_dni)
 PK: {code}
 FK: {dni_g} → GUIDE
 NNV: {date}

• GUIDE(dni_g: d_dni, name: d_name, language: d_lan, age: d_age)
 PK: {dni_g}

• DRIVER(dni: d_dni, name: d_name, address: d_ad, age: d_age, gender: d_gen)
 PK:{dni}

• CITY(city_name: d_name1, history: d_his, inhabitants: d_inh)
 PK:{city_name}

• VISIT(code: d_code, city_name: d_nom1)
 PK:{code, city_name}
 FK:{code} → TRAVEL
 FK: {city_name} → CITY

• DRIVES(dni: d_dni, code: d_code)
 PK: {dni, code}
 FK: {code} → TRAVEL
 FK: {dni} → DRIVER

1 DNI stands for the number of the "Documento Nacional de Identidad" (Spanish National Identity Document).

TRIP
cod
fecha
precio
dni_g GUIDE

dni
name
idioma
edad

CITY
city_name
history
inhabitants

VISIT
cod
nom_ciu

DRIVER
dni
name
address
age
gender

DRIVES
cod
dni

Con formato: Inglés (Reino
Unido)

Departamento de Sistemas Informáticos y Computación

Information system: CYCLISM

Information requirements

Objects: EQUIPO, CICLISTA, PUERTO, MAILLOT, ETAPA
 For each EQUIPO (TEAM): name ("nombre"), the coach ("director") and the racers ("ciclistas")

who compose the team.
 For each CICLISTA (RACING CYCLIST): "dorsal" number (cyclist number assigned to the cyclist

during the race), name, age, name of the team it belongs to, stages ("etapas") he has won, mountain
passes ("puertos") he has gone through on the first position and the maillots ("maillots") he has worn
in each stage.

 For each PUERTO (MOUNTAIN PASS): name, maximum height, category ("1ª", "especial",…),
slope ("pendiente"), stage where it is located and the cyclist who has passed it on first position.

 For each MAILLOT (MAILLOT): maillot code, prize level of the maillot ("tipo"), colour, prize for
wearing it ("premio") and cyclists who have worn it.

 For each ETAPA (STAGE): stage number, length of the stage in kms, departure city ("salida"),
arrival city ("llegada") and the cyclist who has won the stage.

Relational Schema

EQUIPO(nomeq: d_eq, CONDUCTOR: d_nom)

 PK: {nomeq}

CICLISTA(dorsal: d_dor, nombre: d_nom, edad: d_edad, nomeq: d_eq)

 PK: {dorsal}

 FK: {nomeq}→ EQUIPO

 NNV: {nomeq}

 NNV: {nombre}

ETAPA(netapa: d_nº, km: d_km, salida: d_ciu, llegada: d_ciu, dorsal: d_dor)

 PK: {netapa}

 FK: {dorsal}→ CICLISTA

PUERTO(nompuerto: d_nom, altura: d_alt, categoria: d_cat, pendiente: d_pen, netapa: d_nº, dorsal: d_dor)

 PK: {nompuerto}

 FK: {netapa}→ ETAPA

 FK: {dorsal}→ CICLISTA

 NNV: {netapa}

MAILLOT(codigo: d_cod, tipo: d_tipo, premio: d_pre, color: d_col)

 PK: {codigo}

LLEVAR(dorsal: integer, netapa: d_nº, codigo: d_cod)

 PK: {netapa,codigo}

 FK: {netapa}→ ETAPA

 FK: {dorsal}→ CICLISTA

FK: {codigo}→ MAILLOT

NNV: {dorsal}

Departamento de Sistemas Informáticos y Computación

Information system: MUSIC

Information requirements

Objects: COMPAÑÍA, DISCO, GRUPO, ARTISTA, CANCIÓN, CLUB

For each COMPAÑÍA (COMPANY): code, name, address ("dirección"), fax, telephone and
discs which have been published by the company.

For each DISCO (DISC): code, name, date, company which publishes the disc, group which
has recorded the disc and the songs that it contains.

For each GRUPO (GROUP): code, name, date in which the group was created, country
("país"), artists who compose the group, company that has published it and fans club.

For each ARTISTA (ARTIST): dni, name and group s/he belongs to.

For each CANCIÓN (SONG): code, title, duration and disc where it is found.

For each CLUB (FAN CLUB): code, name, main office ("sede"), number of fans and group
they admire.

Relational Schema

CANCION(cod: d_can, título: d_tit, duración: d_dur)

PK: {cod}

NNV: {título}

COMPAÑIA(cod: d_comp, nombre: d_nom, dir: d_dir, fax: d_tel, tfno: d_tel)

PK: {cod}

NNV: {nombre}

DISCO(cod: d_dis, nombre: d_nom, fecha: d_fecha, cod_comp: d_comp, cod_gru: d_gru)

 PK: {cod}

 FK: {cod_comp}→ COMPAÑIA

ETAPA
netapa
km
salida
llegada
dorsal

EQUIPO
nomeq
director

CICLISTA
dorsal
nombre
edad
nomeq

LLEVAR
dorsal
netapa
codigo

MAILLOT
codigo
tipo
premio
color

PUERTO
nompuerto
altura
categoría
pendiente
netapa
dorsal

Departamento de Sistemas Informáticos y Computación

 NNV: {cod_comp}

 FK: {cod_gru}→ GRUPO

 NNV: {cod_gru}

ESTA(can: d_can, cod: d_dis)

 PK: {can, cod}

 FK: {can}→ CANCIÓN

 FK: {cod}→ DISC

GRUPO(cod: d_gru, nombre: d_nom, fecha: d_fecha, pais: d_pais)

PK: {cod}

NNV: {nombre}

ARTISTA(dni: d_dni, nombre: d_nom)

PK: {dni}

NNV: {nombre}

CLUB(cod: d_club, nombre: d_nom, sede: d_dir, num: d_num, cod_gru: d_gru)

 PK: {cod}

 FK: {cod_gru}→ GRUPO

 NNV: {cod_gru}

 NNV: {nombre}

PERTENECE(dni: d_dni, cod: d_gru, funcion: f_fun)

 PK: {dni, cod}

 FK: {dni}→ ARTISTA

FK: {cod}→ GRUPO

COMPAÑÍA
cod
nombre
dir
fax
tlfno

CANCIÓN
cod
título
duración

ESTA
can
cod

CLUB
cod
nombre
sede
num
cod gru

ARTISTA
dni
nombre

GRUPO
cod
nombre
fecha
pais

PERTENECE
dni
cod
funcion

DISCO
cod
nombre
fecha
cod_comp
cod_gru

Departamento de Sistemas Informáticos y Computación

Information system: LIBRARY 2

Information requirements

Objects: AUTOR, LIBRO, TOPIC, WORK, AMIGO

For each AUTOR ("author"): author's identifier, name, nationality and works ("obras") s/he has
written.

For each OBRA ("work"): code of the work, title, year, field, author and works in which it is
included.

For each TEMA ("topic"): identifier of the topic and a brief description.

For each LIBRO ("book"): identifier of the book, title, year, works it contains and its number,
and the friends who have borrowed it.

For each AMIGO ("friend"): identifier number, name, telephone and books which s/he has
borrowed.

Relational Schema

AUTOR(autor_id: string(4), name: string(35), nacionalidad: string(20))
 PK: {autor_id}
 NNV: {name}

LIBRO(id_lib: string(10), titulo: string(80), año: integer, num_obras: integer)
 PK: {id_lib}

TEMA(tematica: string(20), descripcion: string(50))
 PK: {tematica}
OBRA(cod_ob: integer, titulo: string(80), año: d_cat, tematica: string(20))
 PK: {cod_ob}
 FK: {tematica}→ TEMA
 NNV: {titulo}
AMIGO(num: integer, name: string(60), telefono: string(10))
 PK: {num}
 NNV: {name}
PRESTAMO(num: integer, id_lib:string(10))
 PK: {num,id_lib}
 FK: {num} → AMIGO
 FK: {id_lib} → LIBRO
ESTA_EN(cod_ob: integer, id_lib:string(10))
 PK: {cod_ob,id_lib}
 FK: {cod_ob} → OBRA
 FK: {id_lib} → LIBRO
ESCRIBIR(cod_ob: integer, autor_id:string(4))
 PK: {cod_ob,autor_id}
 FK: {cod_ob}→ OBRA
 FK: {autor_id}→ AUTOR

Departamento de Sistemas Informáticos y Computación

AMIGO
num
nombre
teléfono

AUTOR
autor_id
nombre
nacionalidad

ESCRIBIR
cod_obra
autor_id

OBRA
cod_ob
título
año
temática

ESTA_EN
cod_ob
id_lib

PRESTAMO
num
id_lib

LIBRO
id_lib
título
año
num_obras

TEMA
temática
descripción

Departamento de Sistemas Informáticos y Computación

3. Questions about the proposed schemas

Once you have studied each of the proposed schemas, answer the following questions which are
presented next. Every answer must be reasoned in terms of the Relational Schema described above
(in no way it is acceptable to use a rationale based on our background knowledge of the topic).
After that, you can then compare this interpretation with your background knowledge and analyse
whether it is an adequate model of reality. In case of detecting some limitation or malfunctioning of
the schema for the part of reality it wants to model, propose the modifications of the schema you
think can solve the limitations.

Schema: GEOGRAPHIC INFORMATION

1. Can a river flow into two seas?

2. Can a river cross two provinces?

3. Can a river cross the same province twice?

4. Can a province limit with itself?

5. How many seas, as a maximum, can a river flow into? And the minimum?

Schema: COMPANY

6. Can two pieces have the same “zcod” code?

7. Can a piece have two colours?

8. Can a supplier provide two orders with the same piece and project?

9. We could add the attribute “date” to the relation "order", and it can also be included in the
primary key. What would this modification allow?

Schema: LIBRARY 1

10. Can a user read more than one book?

11. Can a user read the same book more than once?

12. Can a book have more than one author?

13. Can a book have more than one topic?

14. Can a topic be a subtopic of itself?

15. Can a book be read by two different users?

Schema: RECORD COLLECTION

16. Can a disc contain more than one work?

17. Can a work have more than one composer?
18. Can the same work appear in the same disk twice, conducted by different conductors?, and

by the same conductor?

19. Can works with the same composer appear in different discs?

Departamento de Sistemas Informáticos y Computación

Schema: TRAVEL AGENCY

20. Can the same trip visit the same city twice?

21. Can a guide speak two languages?

22. Can a driver be in two trips at the same time (date)?

23. Can a driver be also a guide?

24. How many drivers are there, as a minimum, in each trip?

25. Can a guide participate in more than one trip?

Schema: CYCLISM

26. Can a cyclist belong to more than one team?

27. Can a cyclist wear more than one maillot in the same stage?

28. And more than one maillot during the whole race ("tour")?

29. Can a mountain pass appear in more than one stage?

30. Can a cyclist win more than one stage?

Schema: MUSIC

31. Can a disc be published by more than one company? And by none?

32. Can a club admire more than one group? And can a group have more than a fans club?
33. Can a song appear in more than one disc?
34. How many groups can an artist belong to as a maximum? And as a minimum?

35. Can a disc have no songs?

Schema: LIBRARY 2

36. Can a friend have more than one borrowed book at the same time? And borrow the same
book twice?

37. Can a work have more than one topic?

38. Can a book contain a work more than once? And can a work be included in more than one
book?

39. How many works can an author write, as a minimum? And as a maximum?

40. Can a book be borrowed by different friends?

