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Abstract. In this paper we analyse whether there is a subclass of envi-
ronments that are more discriminative for intelligence measurement. We
try to characterise this class as a kind of selection of those which do not
have noise or randomness. We explore such a possibility and whether it
can be formalised and put into practice. In order to do this, we first intro-
duce a simple formalisation of ‘projectible’ complexity which is valid for
infinite strings and, consequently, for environments. From this result, we
suggest an approach which both reduces the dependence on the reference
machine and on the possible start-up garbage generated by an environ-
ment. More precisely, in order to avoid ‘noisy’ environments, especially
those where ‘noise’ appears initially, we propose to let the environment
play with a random agent for a certain number of interactions before
letting the agent we want to be evaluated interact with the environment.
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complexity, two-part compression, MML, effective complexity, intensional
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1 Introduction

Effective testing and evaluation of an individual’s ability require an accurate
choice of items in such a way that they are discriminative, in the way that they
help to discern or quantify the capability which is being measured. Measuring
(machine) intelligence is not different. In the late 1990s, a series of works using
Kolmogorov complexity, compression, Solomonoff’s prediction theory and MML
inductive inference, etc., have developed or extended previous tests and defini-
tions of intelligence (see, e.g, [3], [2] [8], [13], [11], [12] [14]). Following this line
of research, [7] presents the first general and feasible test of intelligence, which
should be valid for both artificial intelligent systems and biological systems, of
any intelligence degree and of any speed. The test is not anthropomorphic, is
gradual, is anytime and it is exclusively based on computational notions, such
as Kolmogorov complexity. And it is also meaningful, since it averages the ca-
pability of succeeding in different environments. The key idea is to order all the
possible action-reward-observation environments by their Kolmogorov complex-
ity and use this ordering to make samples and construct adaptive tests that can
be used to evaluate the intelligence of any kind of agent. The test configures a



new paradigm for intelligence measurement which dramatically differs from the
current task-oriented and ad-hoc measurement used both in artificial intelligence
and psychometrics.

One of the key issues in the previous test is the use of discriminative envi-
ronments only. That means that environments which may lead to dead-ends, are
too slow or that do only allow a few interactions with the agent should be ruled
out. Additionally, a selection of the remaining environments must be done ac-
cording to a probability distribution, since it is obviously impossible to evaluate
an individual with all the (infinitely many) possible environments. The choice
of the distribution is then crucial, since any biased choice would invalidate any
intelligence test that claims to be universal (i.e., fair for any kind of individual).

In [7], a time-weighted version of the so-called “universal distribution” based
on Kolmogorov Complexity [15] is used for the sampling of environments. This
means that simple environments (in terms of Kolmogorov complexity) have
higher probability of appearing in the test than more complex environments
(in terms of Kolmogorov complexity).

But, what is the relation between being simple or complex (in terms of Kol-
mogorov complexity) and having or not a pattern such that an intelligent agent
can take advantage from it? This is the very core and meaning of Kolmogorov
complexity and the modern theory of randomness based upon it. Can a random
environment have high probability of appearing in the test? In order to give an
answer we must first realise that environments are infinite strings following the
chronological enumeration of observations, actions and rewards (see [7] for de-
tails). This means that, since they are forced to iterate indefinitely, there must
necessarily be a pattern in them.

The question arises when we take into account that many environments can
have no pattern at all during some finite sequences of interactions. Imagine
an environment which behaves randomly (as if it were noise) for the first n
interactions and then starts to behave with a very simple pattern afterwards. If n
is large, its Kolmogorov complexity is high, but the pattern is easy. As we discuss
in [7], a low complexity implies simple patterns, and a complex pattern implies
high complexity, but high complexity can be created with simple patterns +
“noise”’, and simple patterns can be included in high complexity environments.
Is this a problem for measuring intelligence? It depends. If we do not care about
knowing the real difficulty of each environment, we can accept having some
environments with some degree of “noise”. But if we want to adapt our test
more quickly to the agent’s intelligence by knowing, in principle, the difficulty
of each item, we need to know the actual difficulty of each item. This is precisely
what item-response theory does in computerised adaptive testing [16][4]. Not
knowing the difficulty of an item still makes testing possible but less efficient.

So, it seems that this can easily be solved by eliminating all the environments
which have noise. There are some problems here, though:

– Eliminating random behaviours (i.e. noise) from environments might imply
a very important bias.
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– Is it easy to tell which environments have noise and which enviroments do
not?

Let us address the first item. Just think about our own world. Would you con-
sider a world where everything is pattern a ‘natural’ environment? Is there any
random behaviour in our world or is everything mechanical (determined from
simple or complex exception-free laws)? At all levels of space and time? Even
though the official scientific view is that there must be (or we must seek) un-
derlying laws for everything, much of what is around us has a high entropy and
(apparently) random behaviours, such as weather, movements, mass distribu-
tions, gases, etc. And even with a fully mechanistic assumption, time and space
complexity makes it more reasonable to foresee tomorrow’s weather from some
abstract but imperfect meteorological principles than by computing the move-
ments of all the atoms in the Earth’s atmosphere during 24 hours. However, it
is important to distinguish between a real scenario and a testing scenario. A
testing scenario should present a high concentration of patterns and decisions
where an intelligent agent can show its abilities. The risk here is that we can
favour agents which tend to overfit, i.e. that try to see patterns where there
are not (such as seeing clouds as sheep), because these agents would benefit if
they expect no noise to be present. It is relevant to note that human beings are
usually overfitters, because we usually see patterns everywhere.

And now let us consider the issue of whether it is possible to separate pattern
from noise. In computer science, there is a common view of inductive inference as
a two-part compression, where we calculate the bits which are taken to code the
theory followed by the description of the evidence using the theory. Typically,
the first part is the explanation or pattern, and the second part includes the
exceptions or stop-rules. For instance, given the string “1010001010101010”, we
can describe it by “repeat 01 seven times, and then modify the fifth bit to 0”.
In this case the main pattern is “repeat 01” (forever), and the exceptions are
(repeat only) “seven times, and then modify the fifth bit to 0”. Is this separation
possible in general?

In the following section we concentrate on this.

2 Splitting the Two Parts of Two-Part Compression

The Minimum Message Length (MML) principle [17] is the first theory which
formalises this idea and sets out what today is known as two-part compression1.
MML is concerned about one hypothesis which explains the data and typically
separates theory from exceptions or, in other cases, theory from parameters +
exceptions. But a clean distinction between main theory and exception is not a
requirement for MML to work.

One of the first approaches to effecively separate pattern from noise and de-
rive a new complexity measure was endeavoured by Gell-Mann and Lloyd [5][6],

1 We can find other related ideas such as the Minimum Description Length principle,
which appeared several years after.
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with the name of “effective complexity” (as a variant of Kolmogorov complexity).
Effective complexity only measures the information content of the regularities
of an object. “The main idea of effective complexity is to split the algorithmic
information content of some string x into two parts, its random features and
its regularities. Then, the effective complexity of x is defined as the algorithmic
information content of the regularities alone” [1].

Independently, the notion of intensional complexity (also as a variant of Kol-
mogorov complexity) was developed as a tool for making intelligent test series
less dependent on the universal machine chosen, and also because “intelligence
was defined as the ability to comprehend” [8][11][14], and only the regular parts
can be comprehended. The idea here is based on the notion of projectibility of
strings, such that given a sequence, only the regular part will project for the
following elements of the sequence. In other words, the irregular part (noise) is
useless for prediction.

A quite different approach (not based on Kolmogorov complexity) was taken
in [12]. Here, each part of the theory gets as much as reinforcement as the times
it is used for the evidence. A part of a theory must be necessary for the evidence
many times and other parts of a theory are only occasionally useful. So there
are different degrees of “pattern”. For instance, the sequence: “print 1 when i is
even and 0 otherwise, except when it is a power of 2, when 0 must be printed”,
shows different degrees of pattern. Since the number of powers of 2 decays very
quickly, most of the bits in the sequence can be explained by the first part of
the theory, and only a few account for the second part of the theory. In fact, our
wording of the theory has been “[main theory], except [secondary theory]”. So
the notion of pattern and noise, and two-part compression seems to be more a
gradual thing than a clean cut.

In fact, the notion of compression ratio is a related concept which is useful
for finite strings. For instance, if a theory has two parts of equal size (n bits
each) and one part accounts for k · n bits of evidence and the other for only
n bits of evidence, we say that the first part has compression ratio k:1, while
the second part has only a ratio of 1:1. When the compression ratios are very
dissimilar, we can talk about a part being the general rule and the other part
being the exception. However, there are ways to express theories such that it
is very difficult to separate one part from another, so the concept of part or
local compression ratio is difficult to apply. See, e.g. the notion of subpart and
subprogram [9][10].

Given the previous approaches, is there a way to re-define a universal distri-
bution so that environments with noise are ruled out?

3 Projectible Complexity

Let us try to summarise the common idea of effective complexity and intensional
complexity as simply as possible. It goes as follows:

Definition 1. Projectible Complexity. The Projectible Complexity of an infinite
string x is defined as follows:
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K̆U (x) = min{l(p) : U(p) = x′ such that ∃n : x′n···∞ = xn···∞}.

This means that the projectible complexity of a string is the shortest descrip-
tion which produces any right-hand cut of the string. For instance, if we have
the string 1011010010001101111111111111111111111111111111111111111..., its
complexity is equal to that of the string 1111111111111111111111111111..., since
the initial part (the first 15 bits of the first string) is considered noise (and with
n=16 we set the equality). In other words, since the projectible complexity is
finite, any randomness which is included in the description must be used sooner
or later, and then the string must be stable in the limit. By stable, we mean
that its pattern is clean (no noise). In order to see more examples, consider the
string AB where A is a part full of noise and random bits and B is an infinite
part without noise and with a complex pattern (e.g. the digits of π). Then, the
projectible complexity of AB completely disregards A and only accounts for B,
the regular part. Now, consider a string CAB where C is a regular but finite
pattern, A is a random/noisy part and C is a regular part. Then the projectible
complexity of CAB equals the projectible complexity of B. Now, consider the
string AB where A is a sequence of one million 1s and B is an infinite sequence of
pairs 01. Then the projectible complexity completely ignores the first part, even
though it is highly compressible. Note that in relative terms, its compression
ratio is much lower than the compression ratio of the rest of the string (infinite
ratio).

There are some interesting properties about the previous definition. The first
issue is that the previous definition only applies for infinite strings, because
for finite strings this n would be chosen as the length of the string and the
definition would not work. This is the reason why all the previous approaches
[5][6][1][11][12] are so complex, while this previous definition is so simple.

The good news is that environments are infinite. That means that we can
apply the previous definition to environments and assign probabilities according

to the formula p(x) = 2−K̆U (x). In fact, the notion of projectible complexity
makes much more sense for environments if we consider that some of the initial
interactions might be some kind of start-up process (or boot-up garbage) and
only after several interactions the environment starts to behave regularly.

And finally, in the case of environments, we avoid a so-called problem of “ag-
ing environments”, where we may have environments which are rich and complex
initially (either by random content or because of a pattern) and then gradually
or abruptly evolve into very simple environments. The use of Kolmogorov com-
plexity does not avoid this.

4 Using Projectible Complexity to Select Environments

According to the previous discussion, we may propose the following methodology
to make a sample of environments.

1. Sample environments according to the probability p(x) = 2−K̆U (x) or some-
thing similar.
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2. Use a random agent to play with the environment during a number of inter-
actions greater or equal to K̆U (x).

The first item has been justified in the introduction. Only the pattern, i.e., the
discriminative part, should be used to order the environments by their difficulty.
The second item is motivated by the use of the previous sample. Since environ-
ments with long random start-up content have low projectible complexity, we
must start interacting with the environment once this garbage content has been
surpassed.

The problem of the previous procedure is that the string AB where A is a
billion-bit long random string and B is just an infinite sequence of 1s has a very
low projectible complexity and we would need a long number of interactions
before reaching the stable part of the environment.

A possibility would be to try to rule out these strings and only get the noise-
free ones, but we are still in the same problem of making a selection and, due to
the halting problem, this is not computable.

Consequently, we propose the alternative procedure below:

1. Sample environments according to the probability p(x) = 2−KU (x) (or a
resource-bounded approximation).

2. For each selected environment, use a random agent to play with the environ-
ment during a number of interactions greater or equal to KU (x) (start-up
period).

3. Consider K̆U (x) (and not KU (x)) as the actual difficulty of the item.
4. Administer an environment of appropriate difficulty to the agent starting

after the start-up period.

With this, we generally avoid start-up behaviours or abrupt changes of patterns,
since the agent we want to evaluate starts playing with the environment after a
sort of testing period so it typically starts a more stable part of the environment.
How long this start-up period should be is a question, although our choice is that
it should be much greater than (and proportional to) KU (x).

5 Conclusions

In this paper we have investigated whether it is possible to tell pattern and noise
apart in the context of Kolmogorov complexity. The ultimate goal is its use
for making samples of discriminative environments which are eventually used
for measuring intelligence. We have seen that this problem is quite slippery,
especially for finte strings. For infinite strings in general, and environments in
particular, we have presented a very straightforward formalisation which allows
us to define a procedure such that we can evaluate agent performance on the
regular parts of the environments, avoiding noisy and random parts (especially
start-up garbage), which are less discriminative. Additionally, this choice makes
the test less dependent on the reference machine used.
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