On Evaluating Agent Performance in a Fixed
Period of Time
(Extended Version)

José Hernandez-Orallo

DSIC, Universitat Politécnica de Valéncia, Cami de Vera s/n, 46020 Valencia, Spain.
jorallo@dsic.upv.es

Abstract. The evaluation of several policies, individuals, systems or
subjects (in what follows, agents) over a given task in a finite period of
time is a very common problem in experimental design, statistics, com-
puter science, economics and, in general, any experimental science. It is
also crucial for measuring intelligence. When the agents have a feedback
information to adjust their performance, we face a more specific (but
still very broad) problem which is frequent in control, robotics and ar-
tificial intelligence. In reinforcement learning, the task is formalised as
an interactive environment and feedback is represented by reward val-
ues, so allowing these problems to be properly modelled. In this and
related areas (such as Markov Decision Processes), several performance
measures have been derived to evaluate the goodness of an agent in an
environment. Typically, the decision that has to be made by the agent is
a choice among a set of actions, cycle after cycle. However, in real eval-
uation scenarios, the time can be intentionally modulated by the agent.
Consequently, agents not only choose an action but they also choose the
time when they want to perform an action. This is natural in biological
systems but it is also an issue in control (some decisions must be made
quickly and some other decisions can take more time). In this paper,
we revisit the classical reward aggregating (payoff) functions which are
commonly used in reinforcement learning and related areas, we analyse
the problems of each of them, and we propose two new modifications of
the average reward to get a consistent measurement for continuous time,
where the agent not only decides an action to perform but also decides
the time the decision is going to take.

Keywords: Performance Evaluation, Reinforcement Learning, Measure-
ment of Intelligence, Artificial Intelligence, Bandit Problems, Optimal
Stopping.

1 Introduction

Measuring agent intelligence is one of the pending subtasks (or requirements) in
the goal of constructing general intelligent artefacts. In the late 1990s, a series
of works using Kolmogorov complexity, compression, Solomonoft’s prediction

theory and MML inductive inference, etc., have developed or extended previ-
ous tests and definitions of intelligence (see, e.g, [5], [4] [9], [12], [10], [11] [13]).
Following this line of research, [16] has recently presented a formal definition of
intelligence as the evaluated performance in a broad range of contexts or environ-
ments. However, time is disregarded in their definition. In [8], an implementation
of an anytime intelligence test is endeavoured, where time is considered. The in-
troduction of time in the evaluation has much more implications than it might
seem at first sight. We do not only face the issue that fast agents score better
than slow agents, but we also need to assess other problems: how can we evalu-
ate fast and slow agents in the same setting?” How can we deal with intelligent
agents that make a shrewd use of response times to score better?

These problems have not been solved in Al areas where agent evaluation is
custom. For instance, evaluating decision-making agents in interactive environ-
ments where observations, actions and rewards take place has been a well-studied
problem in the area of reinforcement learning [20]. However, in general, time (ei-
ther discrete or continuous) is understood as a virtual time. Even in real appli-
cations and robotics, where continuous time appears (e.g., semi-Markov decision
processes, control systems, etc.), any performance evaluation based on rewards
typically does not consider the decision-making time of the agents and, to our
knowledge, never considers extreme speed differences between the agents.

In order to illustrate the problem, imagine that a test is administered to
several students about a new (previously unknown) subject. The test is composed
of a set of exercises, all of them on the same topic, so typically a good student
would improve as she or he does more exercises. Each student receives the first
exercise, works on it and writes the result and gets an evaluation score or points
(e.g. between 0 and 1). Immediately a second exercise is given and the student
works on it similarly. The test goes on until a time limit 7 (previously unknown
by the student) is reached. Once the time is reached, the only information we
have is the reward results for each student exercise and the times taken for every
exercise.

Consider a test taken in half an hour, where several students have got different
results, as shown in Figure 1. As shown in the figure, student s; has scored 0, 0,
1,0,1,1,1,1,1,0,1,1,0, 1, 1 and s has scored 0, 0, 0, 0, 1,0, 0,0, 1, 0, 0, 1,
0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1, 1, 1. Who
is best? We can say that s; usually scores better than sy does but ss is faster.
Let us make the question a little bit more difficult. What about a third student
s3 only being able to complete five exercises with scores of 0, 1, 1, 1, 1?7 From
the figure, we can say that the student has done all of them right from almost
the beginning. We can also say the student is very slow, but with only two tries
she or he has been able to find the way to solve the rest of exercises. And now a
more incisive question: what about a fourth student s4, who does exercises very
fast, but at random, and, eventually, in a series of 5,000 exercises done in the
half an hour is able to score well on 50 of them?

If we ignore time on the previous example we can either accumulate the
results (so students s1, sa, s3 and s4 would get a total return of 10, 18, 4, 50

S1

S2

S3

50

S4
4950

4000
3996000

S5

S6

S7

Fig. 1. Several students being evaluated on a new topic in a fixed time

respectively) or average the results by the number of exercises (so students sy,
s2, s3 and s4 would get an average return of %, %, = ﬁ respectively). We can
also consider the physical time (which is equal for all), and average the results
by time, getting a scaling of the total returns, i.e., 20, 36, 8, 100 points per hour.

An opinion here would be to say that speed and performance are two different
things that we should weight into an equation which matches the context of
application. In the previous case, if the average by exercises is v, the number
of exercises is n and 7 is the total time (in hours) a possible formula might be
v/ = v X \/n/T, giving values 2.3, 2.26, 1.6 and 1 for students s, s2, s3 and s4.

The problem is that there is no formula which is valid in general, for different
tasks and kinds of agents. Consequently, in this setting, the way in which per-
formance is measured is always task-dependent. But worse, the compensation
between v, n and 7 is typically non-linear, so either the function is non-linear
with respect to unit changes (e.g., from seconds to hours), making different
choices when the units change, or the measure gives too much weight to speed.
Additionally, when 7 — oo the measure goes to 0 (or diverges), against the in-
tuition that the larger the time given the better the evaluation. But the main
problem of using time is that for every function which is increasing in speed
(n/T), there is always a very fast agent with a very small average reward, such
that it gets better and better scores. Consider, for instance, a student s5 who
does 4,000,000 exercises at random in the half an hour, and is able to score 1 in

4,000 of them and 0 for the rest. The value would be ﬁ X % = 4. With a

very low average performance (ﬁ), this student gets the best result.

To make things still worse, compare student sz (with results 0, 1, 1, 1) with
another student sg with results 0, 0, 0, 0,0,0,0,0,0,0,0,0,1,1,1,1, 1, 1, 1,
1,1, 1, 1, 1, 1. The speed of sg is more than six times greater than s3’s, but sg
reaches a state where results are always 1 in about 10 minutes, while sg requires
about 17 minutes. But if we consider speed, sg has a value v/ = % X % =5.2
(while it was 1.6 for s3).

This last case shows us that speed is a much too general word for the phe-
nomenon we want to observe here. One thing is the rate (exercises per unit of
time) and a different thing is what we can call expedition (informally, time in
which the agent stabilises to a local maximum average reward). The problem of
expedition is that it is difficult to define, because it depends on the evolution
of the average w.r.t. time, where we arbitrarily must choose a window size to
compute the moving average and then determine when this moving average sta-
bilises at a maximum, i.e. when we determine that the student has reached a
certain level.

But in order to realise that this apparently trivial problem is a challenging
one, consider another case. Student s; acts randomly but she or he modulates
time in the following way: whenever the result is 1 then she or he stops doing
exercises. If the result is 0 then more exercises are performed very quickly until
a 1 is obtained. Note that this strategy scores much better than random in the
long term. In fact, if 0 and 1 were equiprobable, the average expectancy of this
behaviour would not be 0.5 but 0.79 [3][6]. This means that an opportunistic use
of the times could mangle the measurement and convey wrong results.

The previous example tries to informally illustrate the goal and the many
problems which arise around agent evaluation in a finite time 7. Simple alterna-
tives such as allotting a fixed time for each interaction (time-slots) are not rea-
sonable, since we want to evaluate agents of virtually any speed. Even knowing
a range of speeds for a set of agents, how to tune these time-slots independently
from the agent is not easy and, in any case, it is not very practical to make the
agent wait if we want to make an effective test in the shorter time the better.
A similar (and simpler) approach is to set a maximum of cycles n instead of a
time 7, but this makes testing almost infeasible if we do not know the speed of
the agent in advance (the test could last milliseconds or years).

As apparently there is no trivial solution, in this paper we want to address
the general problem of measuring performance in a time 7 under the following
setting:

— The overall allotted evaluation time 7 is variable and independent of the
environment and agent.

— Agents can take a variable time to make an action. The time taken for each
action can also be part of their policy.

— The environment must react immediately (no delay time computed on its
side). This is also a practical constraint for efficient evaluation, since we do

not want to make examinees wait. This also means that environments are
completely insensitive to time.

— The larger the time 7 the better the assessment should be (in terms of
reliability). This would allow the evaluation to be anytime.

— A constant rate random agent 7., , should have the same expected valued
for every 7. This value should also be the same for every rate 7.

— The evaluation must be fair, avoiding opportunistic agents, which start with
very low performance to show an impressive improvement later on, or that
stop acting when they get good results (by chance or not).

Note that the way in which we calculate the pay-off after a time 7 does not
need to be equal to the way in which an agent calculates its expected pay-off
for a finite or infinite horizon in order to make optimal policies. In this paper
we are on the side of the evaluator, and not on the side of the agent designer.
Consequently, it does not matter here if a payoff calculation entails lazy policies
if assumed by the agent.

The main contribution of this work is that we re-visit the classical reward
aggregation (pay-off) functions which are commonly used in reinforcement learn-
ing and related areas for our setting (continuous time on the agent, discrete on
the environment), we analyse the problems of each of them and we propose two
new modifications of the average reward to get a consistent measurement for
this continuous time, where the agent not only decides an action to perform but
also decides the time the decision is going to take.

The paper is organised as follows. The following section describes and for-
malises our setting with general environments, bounded environments and the
newly introduced notion of balanced environments. Section 3 surveys classical
aggregation reward functions and highlights their problems in our setting. Sec-
tion 4 discusses one important (but usually neglected) problem, the trick of time
modulation, which allows mediocre agents to get good results if they are allowed
to stop. We propose two solutions for this. Section 5 presents a comparative
and comprehensive table of the measures found in the literature along with the
ones introduced in this paper and discusses their pros and cons. Finally, section
6 closes the paper with the most important lessons learnt and the future work
ahead.

2 Setting Definition and Notation

An environment is a world where an agent can interact through actions, rewards
and observations as seen in Figure 2.

The set of interactions between the agent and the environment is a decision pro-
cess. Decision processes can be considered discrete or continuous, and stochastic
or deterministic. Typically, discrete-time decision processes are frequent when
the reaction time is assumed constant or immediate, and consequently, the rele-
vance is given to the interactions, and not to the rate (or time delay) which cor-
responds to each interaction. In this sense, interactions are called cycles. Markov

observation

reward

action

Fig. 2. Interaction with an Environment

Chains and Markov Decision Processes are a special class of memoryless systems
in this family with a discrete (finite or countable) state-space. Continuous-time
decision processes are those for which time can take continuous values. Any real
(physical) system with some actuators (e.g., a control system) can be considered
a continuous-time decision process. Other more restrictive cases are continuous-
time Markov processes.

Our scenario is half-way between discrete-time and continuous-time decision
processes. We can call them ‘hybrid’ because they are discrete on the environ-
ment and continuous on the agent. Or, in other words, the environment uses an
artificial (non-physical) discrete time reference (based on time units or cycles)
while the agent uses a (physical) continuous time reference (based on a real value
with a physical unit, e.g., seconds). There are related processes such as semi-
Markov decision processes [18][2] or generalisations of the discrete-time scenario
in which a special action “no action” is defined, such that there might be several
observations and rewards between two consecutive actions of the agent.

In our case, the sequence of events is exactly the same as for a discrete-time
decision process. Consequently, only an action can take place between two pairs
of observation and reward, and only a pair of observation and reward can take
place between two actions. As a result, we can define hybrid decision processes
in the same way as discrete-time decision processes, with the only addendum of
considering the time taken by the agent for each cycle. As mentioned above, the
time taken by the environment is assumed to be 0, i.e., they react immediately.

Actions are limited by a finite set of symbols A, (e.g. {left, right, up, down}),
rewards are taken from any subset R of rational numbers (e.g. between 0 and
1 or between —1 and 1), and observations are also limited by a finite set O of
possibilities (e.g., the contents of a grid of binary cells of n x m, or a set of
light-emitting diodes, LEDs). We will use a;, r; and o; to (respectively) denote
action, reward and observation at interaction or cycle (or, more loosely, state) 4,
with i being a positive natural number. The order of events is always: reward,
observation and action. A sequence of k interactions is then a string such as
r101G17202a3 . . . TEORaE. We call these sequence histories, and we will use the
notation roa<, roa ks -- -, to refer to any of these sequences of k interactions

and ro<g, 70}, - - ., to refer to any of these sequences just before the action, i.e.
7101a17202G3 - . . T|:0k. Physical time is measured in seconds. We denote by ¢; the
total physical time elapsed until a; is performed by the agent.

Both the agent and the environment are defined as a probabilistic measure. In
this way, an environment y is a probabilistic measure which assigns probabilities
to each possible pair of observation and reward. For instance, p(ryox|roa<i—1)
denotes the probability in environment p of outputting riox after the sequence
of events roa<y_1. Note that if all the probability (1) is given to one output
(perception rog) and O to the rest, we then have a deterministic environment.
Unless stated, in the following we will refer to deterministic environments.

For the agent, though, this is now different to the typical reinforcement
learning setting (and more similar to control problems). Given an agent, de-
noted by m, the term m(d, ay|ro<y) denotes the probability of = executing ac-
tion ay before a time delay d (with d being a positive real number) after the
sequence of events or history ro<j. Note that the probability on d is cumula-
tive. Consequently a constant-rate agent performing an action each two seconds
will have p(d, ax|ro<k) = 0 for all a, ro<i and d < 2, and we will have that
p(d, ag|ro<g) > 0 for all d > 2, ro<y, and any feasible action ay. Again, if there
is a value d from which all the probability (1) is given to one action and 0 to
the rest, we then have a deterministic agent. Agents can stop, i.e., there might
be some event sequence 7o<y, such that p(d, ax|ro<i) = 0 for all d and a.

Agents, in general, can use information from their previous rewards and
observations to determine their future actions and times, i.e. ¢;41 —¢; can depend
on the previous experience. However, we will say that an agent does not have
a reward-oriented timing policy when for all 4, ¢;1; — t; does not depend on
any previous r; with j < 4. For instance, a constant-rate agent does not have a
reward-oriented timing policy.

Interactions between environments and agents can be interrupted at any time
7, with 7 being a positive real number. Time 7 will be known as the “overall
test time” or “total time”. With nlu we denote the number of interactions or
cycles performed by 7 in g in time 7. When the agent 7 and the environment p
are clear from the context we will just write n,. The value 7 is unknown for any
agent at any moment.

Let us see a very simple environment and agent:

Ezample 1. Consider a test setting where a robot (the agent) can press one of
three possible buttons (A = { By, Ba, B3 }), rewards are just a variable score (R =
[0...1]) and the observation is two cells where a ball must be inside one of them

(O = {C1, Cs}). Given the sequence of events so far is r101a17202a9 . . . T—10k—1Ak—1,
we define the environment behaviour as follows:

— If (ax—1 = By and op—; = C1) or (ax—1 = By and o1 = C3) then we
generate a raw reward of +0.1.
— Otherwise the raw reward is 0.

The observation oy in both cases above is generated with the following simple
rule: if k is even then o = Cs. Otherwise, o, = C. The first reward (r) is 0.

From the previous example, a robot m; always pressing button B; at a rate of
three times per second would have the following interaction: 0C1 B10.1C3B,0C B10.1.. ..
with times ¢; = %z A second robot m.qnq presses buttons at random among
{By, Bs, B3} at a rate of ten times per second.

In the previous example, both the environment and the agent are determin-
istic. In order to play with this example, we will need to re-visit some payoff
functions next.

3 Several Payoff Formulas Adapted to our Setting

Let us give the simplest notion of payoff, which is just defined as follows:

Definition 1. The total reward sum of agent 7 in environment u in a fived time
T s defined as follows:

Vitr:=F (in)
i=1

where E(-) denotes the expected value, which is only necessary in the definition
when either the agent or the environment (or both) are non-deterministic.

For the example 1, the total reward for 7, in 30 seconds would be % x 30 x 3 x
0.1+ % x 30 x 3 x 0 = 4.5 reward units. The total reward for m,.,,4 in 30 seconds
would be § x 30 x 10 x 0.1 + 2 x 30 x 10 x 0 = 10 reward units.

One of the problems of a cumulative reward function is that the greater the
time 7 the greater the expected value. More precisely, this is always the case
only when rewards are positive. Consequently, the previous measure cannot be
used as a value in an anytime test where the larger the time 7 the better the
assessment. Classical attempts to solve this issue are the average reward value
[19][17][21] and the discounted (accumulative) reward value [18][2][15], where
the latter is much more frequent in reinforcement learning than the former [20].
Both will be investigated in section 3.2.

3.1 Restricted Environment Classes. Bounded or Negative
Rewards?

One attempt to solve this problem without abandoning the idea of summing
rewards is the notion of reward-bounded (or summable) environment [16].

Definition 2. An environment p is reward-bounded if Vi : 0 < r; < 1 and for
every agent m:

oo

lim: LoVt T = Zn‘ <1

=1

The idea is motivated by the issue that payoff functions based on weighted or dis-
counted reward usually require the arbitrary choice of a discounting function and
a parameter. These set the horizon (i.e., the number of future actions for which
rewards must be anticipated). Instead of this choice, reward-bounded environ-
ments can accumulate rewards without reaching infinite values and, apparently,
we do not need to specify any extra function or parameter.

However, the previous idea has several problems. First, it is clear that it is
easy to make any environment reward-bounded, by just dividing raw rewards by
expressions such as 2* or any other kind of discounting function whose total sum
is lower than 1 (see [14] for an extensive list of possible discounting functions),
hence ensuring that if the rewards, as assumed, are Vi : 0 < r; < 1, then the total
sum can never be greater than 1. But this implies that the discount function
is hardwired into the environment. We can make this depend on a universal
distribution over the universal machine which generates the environments, but
in the end this is basically the same as not setting the reward-bounded condition
and choosing the discount function externally with a universal distribution over
a universal machine generating discount functions.

In any case, be it internally hardwired into the environment or chosen exter-
nally there is another problem with discount functions. For the overwhelming
majority of reward-bounded environments, the first actions are typically astro-
nomically more important than the rest. This can be softened with discount
functions which approach a uniform distribution or with discount functions that
depend on the agent’s age!, but in the end, as the number of interactions grow,
the first actions (dozens or millions) get most of the distribution and hence most
of the total reward. And, typically the first actions take place when the agent
explores the environment. This is related to a similar problem for discounted
rewards?.

There is still another (more serious) problem. With reward-bounded envi-
ronments, random agents typically increase their return as 7 grows (this also
happens for non-random agents, but this is somehow expected). This is against
the natural constraint that a constant-rate random agent 7, , should have the
same expected valued for every 7. This is also against the related constraint
that this value should also be the same for every rate r (with reward-bounded
environments, a faster random agent would typically score better than a slower
random agent both measured in the same timespan 7).

And, finally, consider the previous aggregated function applied to biological
systems (e.g., a child or a chimpanzee). Since all the rewards are always positive,
the subject will strive to accumulate as much reward as possible, generally acting
fast but thoughlessly (hyperactive).

! This is not possible in our setting, since we have a physical time reference and the
agent’s age depends on its speed.

2 In fact, in order to show the equivalence in the limit of the average reward and the
discounted reward, [14] infinitely many cycles have to be removed from the start.

As an alternative to discounting and also to reward-bounded environments,
and especially conceived to work well with any agent (including random agents
and biological agents), in [8] we propose the notion of balanced environment:

Definition 3. An environment p is balanced if Vi : —1 < r;, < 1 and for a
constant-rate® random agent T and 0F any rate v then

N [rxT]
V>0 BE(VEei) =B Y ni| =0
i=1
Note that when applied to biological systems, a reward of —1 does not necessarily
imply a punishment, but generally the removal of something which is appreciated
by the subject or the removal of a previously awarded reward. The previous
definition says for all 7. This avoids environments such as “give 1 at the first
interaction, and then (—1)/2°~! at the rest” (while it converges to 0 when 7 —
00, its expected value for finite 7 is not 0) and environments such as “give 1 at
the first interaction, and then —1 at the second. And then always 0”. Note that
it allows nondeterministic environments. In fact, we have balanced environments
such as “reward x # 0 at the first interaction with a uniform distribution between
—1 and 1, and then —x at the second interaction. And then always 0”.

The construction of balanced environments is not difficult, even universal
ones, as shown in [7]. It is clear to see that changing rewards from the interval
[0,1] to the interval [—1,1] creates a phenomenon which is frequently ignored
in reinforcement learning but is omnipresent in economics: “everything that has
been earned in previous cycles can be lost afterwards”. This makes the behaviour
of environments with only positive rewards very different to the behaviour of
environments with both positive and negative rewards.

3.2 Average and Discounted Aggregated Reward

As mentioned in the introduction, the goal was to measure the performance of an
agent in an environment in a given time 7. Apart from the unweighted sum, there
are many different ways to compute the aggregated reward (or return value) of
a set of interactions against an environment. In reinforcement learning there
are two main approaches for doing that: the cumulative reward (with weights,
typically known as discounting) and the average reward [19][17][21][18][2][15][20].

Let us see some of them adapted to our continuous time limit setting. For
instance, reward can be averaged in two different ways, averaged by the number
of cycles of the agent (average reward per cycle), or averaged by the physical
elapsed time (average reward per second).

Definition 4. The average reward per cycle of agent m in environment p in a
fized time T is defined as follows:

1 &
i Z:E e i

3 Instead of constant-rate random agents the definition can also be extended to any
random agent without reward-oriented time policies.

10

If n. =0, then v ||T is defined to be 0.

The previous definition clearly ignores the rate of the agents. If applied to bal-
anced environments, then a constant-rate random agent has an expected average
reward per cycle of 0 and independently from the rate.

Definition 5. The average reward per second of agent m in environment [in a
fized time T is defined as follows:

1 & 1
whlT=F (T;n) = ;Vlf ka

This definition takes the rate into account. With this measure faster (good or
bad) agents usually get higher (respectively positive or negative) results. In fact,
it is measured in reward units per second. In balanced environments, constant
rate random agents have expected average reward per second of 0. One of the
problems of this measure is that a very fast (but mediocre) agent is usually
better than a very slow (but good) agent.

Finally, let us revisit the most popular aggregated measure in reinforcement
learning, known as discounted reward, which is just a weighted sum. We will see
a generalised version of discounted reward, following [14]. Accordingly, we define
v = (71,72, -..) with 7 being positive real numbers (typically with v; > v;41),
as a summable discount sequence in the sense that I7" := > v < oo. If k=1
we simply use I'™.

And now, the discounted reward (per cycle) is defined as:

Definition 6. The discounted reward of agent w in environment u in a fived
time T is defined as follows:

T 1 S
Vilylr = E (m va)
=1

A typical choice for 7 is the geometric discounting (7, = A¥,0 < X < 1). For a
more exhaustive list see [14]. As the very name says, all of them are discounting,
so the first rewards contribute to the aggregated value much more strongly than
the rest. How much? That depends on the choice of 7. An interesting thing to
mention is that «y is independent of the rate, so making the result very dependent
on the rate. This makes random agents increase their values with increasing
values of 7 if the environment is not balanced. And even a slightly better than
random agent can have better results (although not very good) than a slower
but competent agent. An alternative is to define a v which is a function of ;,
but in general this has the same behaviour but additionally this creates other
problems (stopping policy problems, as we will see in the following section).

11

4 The Problem of Time Modulation

The time taken by each agent to perform each action is not necessarily constant.
It might depend on the cost of the computation (e.g. an agent can require differ-
ent times depending on the difficulty of the action or the history it has to check
or to examine). But, more importantly, it can be intentionally modulated by the
agent. Consequently, agents not only choose an action but they also choose the
time they want to devote to an action. This is natural in biological systems but it
is also an issue in control (some decisions must be made quickly and some other
decisions can take more time). More generally, an agent could decide to stop,
which also implies stopping any further exploration but also any further reward
(this is related to the exploitation vs. exploration trade-off, bandit problems,
gambling, etc.).
First of all, let us define the notion of “time modulation policy”.

Definition 7. A reasonable time modulation policy for agent 7 in environment
u evaluated in a fized time T is any intentional (or not) assignment for val-
ues ty1,ts,... where Vi t; > t;_1, such that every t; can depend on previous
t1,t2,...,t;_1 and also on previous rewards and observations, but never on T
(since T is not known by).

A time modulation policy can make the agent stop on t;, just considering that
t;+1 is infinite. A special case of modulation policy is a stopping policy where
the times are considered constant until the agent decides to stop. For instance,
a constant-rate random agent which can decide to stop at any moment has a
stopping policy.

In our setting, a tricky (but good) policy here would be to act as a fast random
agent until having an accumulated/average reward above a certain threshold
(this can happen with more or less probability depending on the threshold)
and then stop acting. We call this agent an opportunistic fast random agent.
For instance, consider an agent which makes an action randomly. If reward is
positive, then stop (no other action is performed). Consequently, in this case
the final reward will be positive. If the reward is negative, then the agent would
go on acting fast and randomly until the accumulated reward were positive.
Note that this strategy ensures a positive reward in balanced environments?.
Consequently, an agent could get a very good result by having very fast (and
possibly lucky) first interactions and then rest on its laurels, because the average
so far was good.

The following theorem formalises this:

Theorem 1. There are random agents Tranq using stopping policies not know-
ing T such that for some balanced environment i, there is a value t such that

V7>t ULWMHT > 0.

4 In fact, if only rewards —1 and 1 are possible, the expected reward is 0.79 x 2 — 1 =
0.58 (as mentioned above, for a proof of this, but using coins, see [3][6]).

12

Proof. Consider a balanced environment with two actions {A, B} such that it
gives reward 1 when agent performs action A and —1 otherwise. Consider a
stopping policy which performs a first action a; (at random from {4, B}) in a
finite time t;. If r1 > 0 then it stops. Otherwise it performs a second action
as (at random from {A, B}) in a finite time to = 2t;. If r1 + 79 > 0 then it
stops. In general, for every cycle ¢ the agent will go on performing randomly
until 3.7 > 0.

We denote by v; the value of UZ:”""d”T when t; <7 < t;11. For 7 < t; we have
vp = 0 by definition. For ¢; < 7 < ¢ we have a probability of % of getting +1
and 1 of getting —1. Consequently, we have v; = 2(+1)/1 + 3(—1)/1 = 0. For
to < 7 < t3 we have a probability of % of getting +1, 2% of getting —1+4+1 and 2%
of getting —1 — 1. Consequently, we have vy = 1 (+1)/1+4 55(0)/2 4 55 (—2)/2 =
% +0= —I—% = +0.25. For t3 < 7 < t4 we have a probability of % of getting +1,
o of getting —1+1+1, & of getting —1+ 1 —1, 55 of getting —1 — 1+ 1 and
o of getting —1 — 1 — 1. Consequently, we have vz = 2(+1)/1 + 55(+1)/3 +
35 (—1)/3+55(—1)/3+ 55 (-3)/3 =4+ 55 — 55 —§5 — 3 = +0.333. In general,
for every value of ¢ (other than 0), when t; < 7 < t;;; we have an expression of
the form

positives zeros negatives
P P p, 1 1
v k1+k2+ +kp+m(1+ 2+ F)+z2z(1+ NoA4 ...+ Ny)

where P; are positive terms, Z; are 0 terms (which only appear for even values
of i) and N, which are negative terms. For ¢ + 1, all the positive terms P;
will remain unaltered, since, by definition, they have stopped previously. Each
Z; . . .
zero term %% decomposes, since the rewards —1 and 1 are equiprobable, into

27
(iff)—;ﬂ + (iff);}H . Since Z; = 0, it is clear that this sum is 0. On the other hand,

each negative term NQ"‘
Ny +1 N1 . . :
GrieF T G Since Ny, is negative we have that:

N, +1 Np—1 2N, Ny >Nm
(i +1)20F0 (G 1)20H0 (14 1)20F0 (54 1)20 T 42
which means that the positive and zero terms remain constant, and the negative
terms are smaller (less negative) for ¢ 4+ 1 than for i. Consequently,

decomposes, since the rewards —1 and 1 are equiprobable,

into

posilives zeros negatives

=~ PN
Vit1 — UV = 0 + 0 + c =c>0

Since for ¢ = 1 we have that v; = 0 and v;41 — v; > 0, by induction, we have
that v; > 0 for all i > 2. Consequently V7 >ty : vjrend[[T > 0. a

A first (and naive) idea to avoid stopping policies would be to weight each
action by the time proportion which is taken to make the action. A very short
action would have less weight than an action which has required more time to
be taken. Apart from being counterintuitive, this would also be tricky, because
an agent which is sure of a good action will delay the action as much as possible,

13

which is, again, counterintuitive. On the other hand, giving more weight to
shorter decisions is more intuitive, but it has the problem of very fast mediocre
agents scoring well, and, additionally, it also suffers the problems of opportunistic
time modulation.

Another approach is to recover the idea of dividing by 7, as we saw with w,
but also maintaining an average on cycles.

Definition 8. The average reward per time cycle of agent 7 in environment
in a fized time T is defined as follows:

1 <
' ||lr = E | —m— i
U,u“T (h(n-,—,T);r>

where h(n,, 7) is a function which both depends on the number of interactions
and the overall time. An option might be /n 7.

However, again, we have several problems: we have to choose h, any non-linear
function would turn ¥ non-scalable for unit changes, and still it is not clear that
the time modulation problems are solved.

A better possibility is to adjust the average reward per cycle by computing
the time left from the last action until time 7 as pessimistically as possible,
adding a —1 reward with a frequency equal to the frequency of actions so far.
Namely,

Definition 9. The average reward per cycle with final adjustment of agent 7 in
environment [in a fived time 7 is defined as follows:

1 s T—1
AT j : nr
’U“HT =F <nT r, — tn >

i=1 T

The term on the left is the average and the term on the right is a pessimistic
expectation (—1 x the proportion of time left). The term on the right does
not significantly affect the average for typical agents which are able to do a
certain number of actions regularly in time 7. For instance, if an agent performs
1,000 actions in a second at a regular rate of 1 ms. approximately each, then
the correction term will only remove 1/1000 to the average. For opportunistic
agents, however, this term is a deterrent. It is important that the agent should
not know the exact value of 7 to preclude any possible use of this information.

The following theorem shows that this new measure is a deterrent for any
opportunistic stopping policy:

Theorem 2. For every balanced environment i and agent w, there is no stop-
ping policy not knowing T which eventually stops such that lim, o0y " [|T > 0.

Proof. If the agent stops after n interactions at time ¢,,, since 7 — oo, that means
that Tt_& — oo while == >""7, r; is constant (since rewards are bounded) and

remains constant. Thus, limT_)oof)ZmndHT — —00. |

14

Although it avoids stopping, the previous measure v has a somehow unaes-
thetic result. Depending on how the ¢; are managed, a random agent can have
negative expected values.

So, with a similar aim as the previous definition, we propose the following
modification:

Definition 10. The average reward per cycle with diminishing history of agent
m in environment p in o fived time T is defined as follows:

1 & t
llri=E (=3 r| where n* = |n, (2
UpllT (n* i_1r> where n {n (.)J

This definition reduces the number of evaluated cycles proportionally to the
elapsed time from the last action until 7. That means that if the last actions
have been good and we delay future actions and let time pass, we soon make the
measure ignore these recent good rewards. If we stop, in the limit, the measure
reaches 0, so it also avoids stopping policies, as the following theorem shows.

Theorem 3. For every balanced environment p and every agent w, there is
no stopping policy not knowing T which eventually stops such that mTrqnq has
limy o0 remd||T > 0.

Proof. If the agent stops after n interactions at time ¢,,, since 7 — oo, that means
that t"T* — 0 while n, is constant. That means that n* — 0. Consequently,
limy o0 ||T = 0. a

And now, we can ensure what happens in any case (stopping or not) for a
constant-rate random agent:

Theorem 4. For every balanced environment u, a constant-rate random agent
Trand With any stopping policy has limTHooT)Zm"dHT =0.

Proof. If the agent does not stop, then from the definition of balanced environ-
ment, we have that for any rate r V7 > 0 : E (VJ”’“”d 0 7') =FE (ngﬂ 7’¢> =0

If the agent stops we know, from theorem 3, that we have lim,_,ocv);7o" |7 =0.
O

A more difficult question is whether time modulation policies are completely
avoided by the previous definition. The answer is no, as we see in the following
example.

Ezxample 2. Consider the environment used in theorem 1 and a time modulation
policy which performs a first action a; (at random from {A, B}) in a finite
time t; = 2u. If r1 > 0 then wait during time 2u before doing another action.
Otherwise (r; < 0) then perform a second action ay (at random from {4, B})
in a finite time to = t1 + w. If 71 +r9 > 0 then wait during time 2u before doing
another action. In general, for every cycle i the agent will go on performing
randomly and if j<iTi >0, it will delay its action 2u and otherwise it will
delay its action wu.

15

It can be shown that the previous example has an expected reward for finite
values of 7 which is not 0. We can see this in general.

Lemma 1. We denote R}~ (i) the result of any given payoff function R until
action i. For every R, an agent w after action a; with a locally optimal time
modulation policy should wait a time ty for the next action if and only if Vt; <
t<ti+tqg : Rjrend(i) > E(Rjrend(i+1)).

In other words, the payoff until ¢; +t4 not performing any action is greater than
the expected payoff performing the following action.

Proof. If the agent acts at a time t < tg4, then its expected payoff will be
E(Rjrand(i + 1)). If the agent does not act at a time ¢ < ¢4, then its payoff
will be (R]~+n(i 4 1)). Consequently, a locally optimal policy for time ¢ is to
abstain from doing any action whenever R}end (i) > E (R} (i + 1)). O

The previous lemma does not say whether the agent can know the expected
payoff. In fact, even in cases where the overall expected payoff is clear, an agent
can use a wrong information and make a bad policy. Let us see this in the
following example:

Ezxample 3. Consider an environment which randomly outputs a first reward
with a uniform distribution between —1 and +1. If r{ = —1 then outputs
the same reward —1 during m interactions, and then changes to reward +1,
outputting it indefinitely. We call any sequence of events with this pattern, a
+path. If ;1 = 41 then outputs the same reward +1 during m interactions,
and then changes to reward —1, outputting it indefinitely. We call any se-
quence of events with this pattern, a —path. Clearly, a constant-rate random
agent has an expected payoff of 0 for every 7. Consequently, the previous en-
vironment is balanced. A random agent 7,q,q cannot learn, and consequently,
cannot update its expected future reward, which should be 0. Consequently, if
the random agent is in a +path with interaction ¢ > 2m then, it is clear that
vprand(i) > E(Rjrend(i + 1)) = 0 since it thinks that its expected reward in the
future is 0. Consequently, it decides to introduce a delay according to the pre-
vious formula, while it is an error (in this environment, once in a +path, acting
quickly is the best option to increase average reward).

The apparent paradox vanishes because lemma 1 is shown with the true ex-
pected value, and not the expected (or estimated) value by the agent. With this,
we can conclude that although random agents can use time modulation policies
and can work well in some environments, they can also be bad in other envi-
ronments. As a result, good agents can also be discriminated from bad agents
because they have (or not) good and adaptive modulation policies. The follow-
ing theorem shows that good time modulation policies are not easy to find, in
general.

Theorem 5. Given any agent w there is no time modulation policy which is
optimal for every balanced environment p.

16

Proof. The theorem derives directly from lemma 1 and the fact that since the
set of balanced environments includes any computable function, there are some
environments for which the expected value of agent 7 is incomputable, meaning
that the equation from lemma 1 cannot be used or, if used, it has to be done
with some approximation which might be suboptimal. a

So we have realised that time modulations are impossible to avoid (only
minimise). Before going to the general discussion, let us mention an alternative
that could be used to make all the agents benefit from modulations. This would
imply the computation of the better modulations by each environment (and
calculate the reward considering them). This tricky idea is not possible, since
the environment does not know the behaviour of the agent (this is necessary
in order to apply lemma 1) and consequently cannot calculate its optimal time
modulation policy. This is the other side of the coin of agents not been able to
calculate optimal modulation policies in general.

As a result, we will have to accept that time modulation is part of the agent
behaviour and needs to be considered in the measurement.

5 Discussion and Comparison of Payoff Functions

After the analysis of several functions to calculate the payoff adapted from the
literature, and the introduction of two new variants with some associated results,
it is necessary to sum up and give a summarised and comprehensive view. The
setting we introduced in section 2 was characterised by different response times
on the side of the agent. These different response times could be motivated by
different agent speeds (a software agent can perform an action each millisecond or
each hour, a biological system can react in about 10 seconds) or by an intentional
use of delays. For the phenomenon of speed, we would not like to have speed as
the main factor for evaluation. In fact, for a previously unknown problem, the
number of interactions in a fixed time is something that could be tuned by the
agent in order to get a good performance. Consequently, the action rate should
not be directly measured in any aggregated function. On the other hand, the
problem of stopping policies and time modulation policies has to be considered
and a consistent appraisal has to be made.

Other practical issues for each function are related to the behaviour against
random agents, the convergence or boundedness of the results, whether there is
a preference for the start or the end of the testing period, etc. In what follows,
we will examine the previous payoffs according to several features:

1. Do random agents get a somehow central value? A constant-rate random
agent should have a centred stable value, preferably 0.

2. Is the result of random agents independent from 7 and the rate? The per-
formance of a constant-rate random agent should be independent of 7 and
the rate of the agent (for high values of 7).

3. Is it precluded that a fast mediocre agent can score well? The performance
of a slightly better than random agent should be low and not significantly
dependent on time and its rate.

17

4. Does the measurement work well when rates go to infinity?

5. Do better but slower agents score better than worse but faster agents? An
agent m; which attains better rewards than 7 but takes more time should
score better, at least for 7 — oco.

6. Do faster agents score better than slow agents with the same performance?
Does it distinguish between two agents with same rewards but working slower
in a finite time 77

7. Are the first interactions as relevant as the rest? The first interactions should
not account for a significant part of the return.

8. Is the measure bounded for all 77 If 7 — o0, is R bounded or not (also goes
to 00)?

9. Does it work well with agents that face environments where actions require
more and more time to decide (as an NP problem)? A mediocre agent could
prefer a rough quick approximation to a problem than the right (more time-
consuming) solution.

10. Is it robust against time stopping policies?

11. Is it robust against time modulation policies?

12. TIs it scale independent? Does it give the same (or scalable) result when using
different time units (e.g., hours instead of seconds)?

Given the previous features, the following table 1 summarises whether each of the
previous measures comply with the feature. The previous features are phrased
in such a way that a “Yes” is a positive result and “No” a negative one.

HEnvironment TypeHScore FunctionH 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11 ‘ 12 H

General Vit No|No|No|[No|[No|Yes|Yes| No|No |Yes|Yes|Yes
Bounded VitT No|No|No|No|No|Yes|No|Yes| No|Yes|Yes|Yes
Balanced Vit Yes|Yes|No|No|No |Yes|Yes|No|No|No|No|Yes
General v, ||T No | No [Yes|Yes|Yes| Yes| Yes|Yes| Yes| No | No Yes
Balanced CHIG Yes|Yes|Yes|Yes|Yes|Yes|Yes|Yes| Yes| No | No|Yes
Balanced wp|T Yes|Yes|No [No|No |Yes|Yes|Yes| No|No|No |Yes
General Vilvylr No|[No|No|No| * |Yes|No|Yes|No|Yes|Yes|Yes
Balanced VT Yes|Yes|No|No| * |Yes|No|Yes|No|No|No|Yes
Balanced iy || Yes|Yes|No|No |No|Yes|Yes| No|No|No|No|No
Balanced o, || No [No |Yes|Yes|Yes|Yes|Yes|Yes| No | Yes| No | Yes
Balanced o, ||T Yes|Yes|Yes|Yes|Yes|Yes| Yes|Yes| Yes|Yes| No Yes

Table 1. Comparison of Payoff Functions. Symbol ‘*’ denotes that it may depend on
a parameter (e.g.).

There are several measures which cluster together. For instance, VI f 7
and wl’f|7 get almost the same answers, since one is the scaling of the other
using 7. And VI 1} 7 also gets very similar results to VT |v|7, since all of them
are cumulative. Averages, on the contrary, have a different pattern. In general,
it is also remarkable that the use of balanced environments typically is more

18

problematic on issues 10 and 11, while being better on 1 and 2. The measure
¥ in balanced environments gets ‘yes’ 11 times from a total of 12. This is, of
course, our general recommendation, although we understand that other better
alternatives could be proposed depending on the kind of performance and agents
involved in the measurement.

Feature 9 has to be discussed in more detail. It refers to cases where nec-
essarily (not because of the agent’s time modulation policy) the response times
increase with time. This is a general issue in many problems, since, as time in-
creases, more history has to be taken into account and decisions can be more
difficult to make. Consider for instance a problem such that an agent has to
decide whether ¢ (which is the interaction number) is prime or not. The best
algorithm known to date for doing this works in polynomial time®, but it is still
the case that it takes much more time when ¢ increases. Consequently, many of
the payoff functions will penalise the agent executing this algorithm for increas-
ing values of 7 or n,. On the contrary, v}}||T would not penalise this at all (but
allows the stopping problem) and o7||7 penalises it very mildly. For problems
with exponential complexity (and many N P problems), though, o7||7 typically
will make n* go to zero between interactions (¢;+1 > 2t;). This means that other
algorithms approximating the problem in polynomial time could get better re-
wards. However, we can also think about a problem where the time required is
not a function of ¢ or might be (pseudo-)random. Taking time into account can
be a serious problem, and ignoring it can motivate the agents to skip difficult
instances and go for the easy ones. All these policies, again, are tricky if we only
design agents for one reduced set of environments, but they can be considered
intelligent if they work for a broad family of environments.

6 Conclusions

This paper has addressed a problem which is apparently trivial: to evaluate
the performance of an agent in a finite period of time, considering that agent
actions can take a variable time delay (intentionally or not). However, the eval-
uation is more cumbersome than it might seem at first sight. First of all, it is
closely related, but not the same, as the measurement in reinforcement learning,
which typically disregards agents reaction times. Additionally, payoff functions
are conceived to be embedded in the design of the algorithms that control agent
behaviour, not to be used in a general testing setting. And it is important to
mention this again, since here we are not (mainly) concerned with the design of
agents but in their evaluation. Consequently, we know that, as Hutter says [14]:
“eternal agents are lazy”, and might procrastinate their actions. This is what
typically happens with averages, since with an infinite number of cycles (i.e.,
eternal life) we will always be able to compensate any initial bad behaviour. We
do not want to avoid this. We want that, if this happens, the measure takes
it into account. In our setting, we have a limit 7 (so agents die), but they do

5 It can be solved in polynomial time with respect to the number whose primality we
want to check [1].

19

not have a clue about their life expectancy. When this 7 is not known or it
might be infinite, a typical possibility is to use a weighting (i.e. discounting).
This generally translates into an evaluation weighting where the first actions are
more important than the rest, which is not reasonable. This does not mean that
the formula of discounted reward should not be used in agent design. On the
contrary, discounted reward and the techniques that derive from them (such as
Q-learning) could work well in our measurement setting, but we should not use
them as the external performance measure. In any case, we must devise tests
that work with artificial agents but also with biological beings. This is one of
the reasons that negative rewards are needed. Paraphrasing Hutter [14] about
eternal agents being lazy, we can say that using cumulative positive rewards
make agents hyperactive.

Our main concern, however, has been an opportunistic use of time. This
problem does not exist when using discrete-time agents and it is not common in
evaluation, especially outside the areas of control and robotics, where the goals
and measurements are quite different. The two adjustment proposals on the
average try to solve the stopping problem. Since the time modulation problem
cannot be solved in general in this setting, we have to consider that the use of
times is licit and it might also be a sign of performance.

The main application of our proposal is for measuring performance in a
broad range of contexts or environments which, according to [16], boils down
to measuring intelligence. The setting which is presented here is necessary for
an anytime intelligence test [8], where the evaluation can be stopped anytime,
and the results should be better the more time we have for the test. And this
links with the issue of reliability. Since we are working on averages, we should
study the reliability as a function of the number of cycles, especially to take
into account that an evaluation with only one cycle is very unreliable. However,
here, we think that any classical statistical dispersion measure here would be an
option, without the need of any further modification over the definition of v.

Finally, as future work, we think that the use of continuous-time environ-
ments must be investigated, especially when other agents can play inside the
environment. This is typical in multi-agent systems, and reaction times are cru-
cial. The problem here is to determine the rate of the system, because it can
be too fast for some agents and too slow for others. Additionally, if we want
to evaluate only one agent, we have to consider the speeds of the other agents.
Another future question is to analyse the case when 7 is known by the agent.
In this case, the pressure over time modulation policies is higher, but typically
delays can take place before the last action (very close to the limit 7) when the
last action is expected to be good.

7 Acknowledgments

The author thanks some comments from Sergio Espafa on the issue of “hyper-
active” agents, and M.Jose Ramirez and Cesar Ferri for comments on definition
3 and theorem 1. I am also grateful to David L. Dowe for reading a draft of

20

this paper and spotting several mistakes and typos. The author also thanks the
funding from the Spanish Ministerio de Educacién y Ciencia (MEC) for projects
EXPLORA-INGENIO TIN2009-06078-E, CONSOLIDER-INGENIO 26706 and
TIN 2007-68093-C02, and GVA project PROMETEO/2008/051.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

M. Agrawal, N. Kayal, and N. Saxena. Primes is in p. Annals of Mathematics,
160(2):781-793, 2004.

D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA, 1995.

Y. S. Chow and H. Robbins. On optimal stopping rules for s, /n. Illinois J.Math,
9:444-454, 1965.

D. L. Dowe and A. R. Hajek. A non-behavioural, computational extension to the
Turing Test. In Intl. Conf. on Computational Intelligence € multimedia applica-
tions (ICCIMA’98), Gippsland, Australia, pages 101-106, 1998.

D.L. Dowe and A.R. Hajek. A computational extension to the Turing test. In
Proceedings of the 4th Conference of the Australasian Cognitive Science Society,
Newcastle, NSW, 1997.

Thomas S. Ferguson. Optimal Stopping and Applications. Mathematics Depart-
ment, UCLA, 2004. http://www.math.ucla.edu/~tom/Stopping/Contents.html.
J. Hernéndez-Orallo. A (hopefully) non-biased universal environment class for
measuring intelligence of biological and artificial systems. In M. Hutter et al.,
editor, Artificial General Intelligence, 3rd Intl Conf, pages 182-183. Atlantis Press,
Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf, 2010.

J. Herndndez-Orallo and D. L. Dowe. Measuring universal intelligence: Towards
an anytime intelligence test. Artificial Intelligence, 174(18):1508 — 1539, 2010.

J. Hernéndez-Orallo and N. Minaya-Collado. A formal definition of intelligence
based on an intensional variant of Kolmogorov complexity. In Proceedings of the
International Symposium of Engineering of Intelligent Systems (EIS’98), pages
146-163. ICSC Press, 1998.

José Hernandez-Orallo. Beyond the Turing test. Journal of Logic, Language and
Information, 9(4):447-466, 2000.

José Hernandez-Orallo. Constructive reinforcement learning. International Journal
of Intelligent Systems, 15(3):241-264, 2000.

José Hernandez-Orallo. On the computational measurement of intelligence factors.
In Performance metrics for intelligent systems workshop, pages 1-8. Gaithersburg,
MD, 2000.

José Hernandez-Orallo. Thesis: Computational measures of information gain and
reinforcement in inference processes. AI Communications, 13(1):49-50, 2000.
Marcus Hutter. General discounting versus average reward. In Jose L. Balcazar,
Philip M. Long, and Frank Stephan, editors, ALT, volume 4264 of Lecture Notes
in Computer Science, pages 244—258. Springer, 2006.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence, 4(1):237-285, 1996.

Shane Legg and Marcus Hutter. Universal intelligence: A definition
of machine intelligence. Minds and Machines, 17(4):391-444, 2007.
http://www.vetta.org/documents/Universallntelligence.pdf.

21

17.

18.

19.

20.

21.

Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Machine Learning, 22, 1996.

M.L. Puterman. Markov Decision Processes. Wiley Interscience, New York, USA,
1994.

Anton Schwartz. A reinforcement learning method for maximizing undiscounted
rewards. In ICML, pages 298-305, 1993.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, March 1998.

Prasad Tadepalli and Dokyeong Ok. Model-based average reward reinforcement
learning. Artif. Intell., 100(1-2):177-224, 1998.

22

