
Programmer’s guide of an intelligence test source code 

version 1.0 

 

This is a simple documentation/guide of how the source code of a system of realization of tests 

is code. This source code is part of the project [ANYNT]. This is the version 1.0 of the system, 

developed by Javier Insa on April 14, 2011. 

 

This document is composed of three sections: 

In the first section we can see information about the project, what the project is about, what 

are the purposes of this software … 

In the second section there is the documentation of the most important structures of the 

system, a diagram class of the whole system and the explanation of the most important 

attributes and functions of the important classes. 

In the third section there is a simple guide of how to construct a new experiment: make new 

exercise from scratch, launch it, get the results and export them to a csv file. 

  



1. Information about the project 

 

In this project we try to make a test to evaluate the intelligence of several kinds of agents, i.e. 

humans, animals, IA systems, etc… This version of the system only supports two kinds of 

agents: humans (that can interact using a graphical interface) and IA systems. 

This project has been built between March 2010 and April 2011. The project has 73 classes and 

7592 lines of code which 46 classes and 2993 lines of code form the subsystem that we see on 

this document. Other classes form the interface, design patterns and other utils of the system. 

The code has been written in Java 1.6 using Eclipse Helios environment and only needs the last 

Java Runtime Environment (JRE) to be launched. For development purposes the Java 

Development Kit (JDK) is needed. 

 

In this program there exist two basic graphic modes: 

A graphic mode designed to test humans, where only the needed information about the test is 

shown. We can see this mode in the image below. 

 

Illustration 1 - Human mode 

 

A second mode has been created to help us to investigate and construct the system. This 

mode has a huge panel options from where we can indicate how we want the exercise. 

This panel options has two sections. 

The first one configures how the environment will be generated, where we can indicate some 

parameters of how the space will be generated and parameters about rewards generators. 



 

Illustration 2 - Space options 

In this interface we can indicate exactly the number of cells and actions that will have the 

space or indicate a minimum and maximum value of these parameters and internally they will 

be calculated randomly using a universal distribution. Also the topology of the space can be 

specified so it can have no restrictions, ensure that the space generated will be connected or 

strongly connected. 

 

 

Illustration 3 - Rewards generators options 

In this interface we can indicate exactly the behavior that will have rewards generators. It can 

be indicated how many moves they will make, if they will try to follow a pattern or move 

randomly, the pattern to follow if appropriated, when they will be relocated … 



In this mode we see much more information in the exercise interface. We can see the entire 

topology of the space, rewards generators behavior, the last reward, the total rewards 

obtained so far, etc… We can see this mode in the image below. 

 

Illustration 4 - Investigation mode 

 

Despite IA systems don’t need any graphical support to interact with the system in the 

investigation mode we can see them in a graphical mode. 

  



2. Documentation for the most important classes 

 

In this section we explain some basic information about the most important classes. It’s 

important to understand the structure of the system and the relations among all the classes in 

order to understand how the system is working. To make it easier here is the class diagram 

where we can see the structure and the relations of all the classes. 

 

Illustration 5 - Diagram class of the system 

 

The project is divided in several folders. 

In the frontend folder there is the code of the presentation, where we can see two main 

packages: humanAGI (where are the classes needed to the presentation for the interface used 

to test humans for the AGI congress) and investigation (where are the classes needed to the 

presentation for the interface used to check if the system is working correctly and view how 

some agents interact with the environments). 

In the business folder there is the code that really manages the test. It is divided in several 

packages, where the package anynt represent the test that is implemented in this project, so 

we can say that it is the most important package of the system and therefore it’s the part that 

we explain in this document. This package is also divided in some packages: environment 

(there are the classes that represent all the kind of environments that can be managed), 

exercise (there is where an exercise is defined), object (these represent all kind of objects that 



can be introduced in the environment), space (this is the space used in the lambda 

environment) and test (where are represented all kind of tests that can be made). 

And finally in folder persistence are the classes that work directly with the files on the 

computer, i. e. images, sounds and write on a file the results of an experiment. 

 

There are 6 important classes where all the system lies. 

These are Test, Exercise, Space, Objeto, Agent and LambdaEnvironment, being these two last 

the most important of the system. 

In the following pages these and other classes are explained for what they serve and their 

structure (Attributes and functions). 

  



Test 

This is the test that will be launched, it should have a list of exercises that will be generated 

when needed, but at the moment there is no need to save the last exercises, so only is saved 

the actual exercise. 

Here we can see the Test with their relations. 

 

Illustration 6 - Test diagram class 

 

Semantics of relevant attributes 

Exercise – Actual exercise that it’s launched in the test. 

Evaluable agent – This is the agent that is evaluated in the test. 

Average reward – This is the average reward of the agent between all the executed exercises.  

 

Semantics of relevant functions 

Start – The exercise is executed in a thread, this method starts the interaction. 

Run Test – It starts the test 



There is a simple hierarchy of functions to prepare, launch, finish ... the test and the exercises. 

To modify this hierarchy ensure first that it’s clear how is it mounted. 

 

Default when creating the object 

Nothing is set by default when the object is created, all the parameters must be defined before 

running the interaction. 

  



Exercise 

This represents one exercise of the test. It’s the responsible to make the interaction between 

the environment and the agents. To make the interaction with the agents easier the 

environment is communicated directly with the agents, so the exercise delegates this 

functionality directly to the environment. 

Here we can see the Exercise with their relations. 

 

Illustration 7 - Exercise diagram class 

 

Semantics of relevant attributes 

Environment – This is the environment where will be done the exercise. 

Evaluable agent – This is the agent that will be evaluated in the exercise. 

Interaction type – This indicates when the exercise will be over. If it is set to 

NumberOfInteractionsInteractionType class then the exercise will be over when it is reached 

the number of interactions that is set in this class. If it is set to TimeLimitInteractionType class 

then the exercise will be over when it is reached the number of seconds set in this class. 

Step waiting – When the evaluated agent is not a human, it could be useful to see in the 

interface how the interactions are happening. This class controls if the environment will wait 

or not between steps. If it is set to StepByStepWaiting class then the system will be waiting 

until you tells him to continue (with a button in the interface for example). If it is set to 

TimeDelayWaiting class then the system will wait the number of seconds indicated in the class 

(for no waiting between steps put this last class with time delay set to 0).  



 

Semantics of relevant functions 

Start – The exercise is executed in a thread, this method starts the interaction. 

Interact – Starts the interaction between the environment and the agents. 

 

Default when creating the object 

Nothing is set by default when the object is created, all the parameters must be defined before 

running the interaction.  



Lambda Environment 

This kind of environment is an approximation of the environment defined in [Hernández-Orallo, 

2010]. 

Summarized in this environment there is a space where agents will interact, there are defined 2 

special agents named Good and Evil that are responsible to drop the rewards in the 

environment (more precisely in the space). Also objects can be placed into the environment. In 

this environment Good and Evil must have exactly the same behavior and cannot collide in the 

same cell. 

Here we can see the Lambda Environment with their relations. 

 

Illustration 8 - Lambda Environment diagram class 

 

Semantics of relevant attributes 

Actions – This are the actions that can be made in the environment, this actions automatically 

set when defining what is the space that will have the environment. 

Agents – This are the agents that will interact in the environment. This agents can be reward 

generators, evaluable agents or simple agents. 

Object – The system is prepared to work with objects (in fact all the agents are also objects) 

and, if needed, there can be implemented the required methods to work with them. 

Space – In this space is where all the agents and objects will be located and will move. Here 

are located all the agents: GoodAgent, EvilAgent the EvaluableAgent… 

Good Agent – This is the agent that will leave good rewards in the space. This agent is partially 

auto generated when the environment is created. 



Evil Agent – This is the agent that will leave bad rewards in the space. This agent is partially 

auto generated when the environment is created. 

Interactions to relocate rewards generators - After a fixed number of steps good and evil are 

randomly relocated on the space. If this value is set to 0 they are never relocated. 

Decrease factor - This number indicates the number for which will divided the rewards after 

each step, if this number is set to 1 they will no decrease and if it is set to Integer.MAX_VALUE 

they will be set into 0 on next step. 

Consume rewards before rewarders update cell rewards - This indicates when the rewards 

are consumed. If it’s set to TRUE (before) then rewards are consumed by the agents and after 

all the rewards in the space are divided by the decrease factor and rewards generators leave 

their new rewards. If it’s set to FALSE (after) then all the rewards are divided by the decrease 

factor and rewards generators leave their rewards and after rewards are consumed by the 

agents. 

Evaluable agent consumes rewards - This indicates if the rewards are deleted from the space 

when an agent consumes it. 

Reward Provider - This divides the rewards of a cell between all the agents that are in the cell. 

If it is set with a NoShareRewards class then rewards are not share/divided between the 

agents, so the entire reward is sent to all the agents that are in the cell. If it is set with a 

ShareRewardsBetweenEvaluableAgents class then rewards are shared/divided between the 

evaluable agents that are in the cell. 

 

Semantics of relevant functions 

Prepare – Prepares the environment to the interactions 

Begin Interaction – It makes the first step of an interaction, such send the observation and 

rewards to the agents, and also some other preparations of the interaction like relocating the 

reward generators. 

Make Interaction – It makes the second step of an interaction, all the agents say what their 

respective actions are. 

Finish Interaction – The agent actions are made, there are calculated their rewards and the 

environment is actualized. 

Finish – All the interactions between the agent and the environment are over. There are sent 

the last reward the agents because they had not received it yet. 

There is a little complex hierarchy of functions to perform all the functionality mentioned 

above. To modify this hierarchy it’s necessary to understand it well. When launching the 

environment, each class performs the operations to manage the attributes of his class, so if a 

class is the responsible of doing some operations it is who will make them and any child class 

will make this operations for him. 



Default when creating the object 

Space is not defined, it must be defined before starting the interaction. 

Good and evil agents are partially created, by default with their creation they are not ready to 

interact with the environment. 

Interactions to relocate rewarders is set to 0. 

Decrease factor is set to 2. 

Consume rewards are set to TRUE (before). 

Rewards are deleted from the space on each step. 

Rewards provider is not defined, it must be defined before starting the interaction. 

  



Space 

This is the space where all the agents and the objects will be located. The space is modeled by 

using a directed graph, where we have the cells (vertices) and the connections (edges). Each 

cell contains agents and objects, and connections (that contains the action that allows you to 

cross over it) allows the agents to move between cells. The agents will be able to move 

between cells by using the connections between them. 

Here we can see the Space with their relations. 

 

Illustration 9 - Space diagram class 

 

Semantics of relevant attributes 

Description – This is the description of the space in textual mode. 

This is a little example of a description: (1++2-|1++2- -|1-2) The character | divides the space 

in cells, so here we have a space with 3 cells where cell 1 is defined by (1++2-), cell 2 by (1++2--

) and cell 3 by (1-2). On each cell description we can see the actions available on the space (in 

this case there are only 2 actions) and the signs + and - indicates the displacement of the 

action. For the description of cell 1 we can see that the action 1 has a displacement of +2 and 

action 2 has a displacement of -1. The cell target of one action is calculated adding the number 



of the cell with the displacement, for cell 1 and action 1 is 1+2= cell 3, and action 2 is 1-1= cell 

3 (if the action tries to go out of the bounds continue cyclically). 

Actually there is always an implicit action, action 0, this action always connects a cell with 

itself, and it’s not defined in the space description. If an agent tries to perform an action that 

the cell doesn’t have this is the action that is performed. Besides action 0 is always allowed to 

perform if desired. 

Minimum/Maximum cells – Before creating a new space, this numbers indicates the bounds 

of the cells that will be created. 

Minimum/Maximum actions – Before creating a new space, this numbers indicates the 

bounds of the actions that will be created. 

 

Semantics of relevant functions 

Generate Space – Generates a new space from scratch, generating its description and after 

creating the space following this space description. 

Construct Space – It construct a new space following the given description. 

Locate Object – It locates an object in the given cell, if the object was in another cell it is 

removed from the previous cell. 

Is Connected – Indicates if the space generated is connected. This means that all cells are 

connected, so any cell is disconnected from the others. 

Is Strong Connected – Indicates if the space generated is strongly connected. This means that 

every cell is reachable from another cell. 

 

Default when creating the object 

There is not any default space constructed by default when creating the object, it must be 

defined before the bounds of the cells and actions and after generate the space. 

Minimum/Maximum cells are set to 2/9. 

Minimum/Maximum actions are set to 2/9.  



Objeto 

This represents an object that can be placed on an environment (more precisely on a cell in the 

space). 

Here we can see the Objeto with their relations. 

 

Illustration 10 - Objeto diagram class 

 

Semantics of relevant attributes 

Name – Name that will have the object 

Location – Cell where the object is located in the space of the lambda environment 

 

Semantics of relevant functions 

Set Location – It changes the location of an object in the space 

 

Default when creating the object 

You indicate the name that the object will have. 

The object is not set in any location. 

  



Agent 

Extends Objeto 

This represents an agent, agents can move in each step in the environment (more precisely in 

the space). All agents have a behavior that tells him how they have to interact with the 

environment. 

Here we can see the Agent with their relations. 

 

Illustration 11 - Agent diagram class 

 

Semantics of relevant attributes 

Move Controller – When an agent is interacting with an environment, it could want to make a 

fixed number of actions (NumberOfMovementsMoveController class), try to follow a pattern 

(PatternMoveController class), make always X actions which will always be available actions in 

the cells that it is passing through, make 5 actions and skip 1 action, … 

Behaviour – This is the behavior that will follow the agent, it could be a random behavior 

(RandomBehavior class), try to follow always the Good agent (TrivialFollowerBehavior class), 

behave like a QLearning algorithm (QLearningBehavior class), have a pattern of actions to 

make (PatternBehaviour class), always move to the cell where the best reward is meant to be 

(it’s not always possible to know what will be this cell) (OracleBehavior class), leave a human 

to behaves (HumanBehavior), … 



Properly combining this two objects (MoveController and Behavior) is set the real behavior of 

an agent, an agent could want to make X random movements 

(NumberOfMovementsMoveController with RandomBehavior) or X movements of a pattern 

(NumberOfMovementsMoveController with PatternBehavior), it could also want to try to 

accomplish the entire pattern (PatternMoveController with PatternBehavior), … Obviously 

there are combinations that have no sense and will not work correctly. 

To generating a pattern of actions that have sense on one environment, it needs the actions 

that are available on the environment. PatternBehavior has a static function 

(generatePattern(actions, stopFactor)) that takes these actions and a Stop Factor and creates a 

new pattern. This stop factor sets the probability to stop generating the pattern when a new 

action of the pattern is created. 

Some behaviors need to know who are good and evil agents or what is the environment where 

they are interacting, simply pass it as parameters when creating. 

All behaviors have the clone operation for easy copy. 

Known actions – List of actions that the agent know to do. 

Interaction History– This is the memory of the agent, here it can be seen all the interactions 

that the agent has seen in the whole exercise. The observation of the environment on a step is 

too big to store in memory, so it is somehow limited the number of observations that the 

agent will memorize (MaximumObservationsSaved attribute). 

Maximum Time to Act – This is the maximum time that the agent has to act for each step. 

(This functionality is not fully implemented). 

Maximum Observations Saved – This number indicates how many observations will be saved 

in the memory of the agent. If this number is set to 5, the agent will only memorize the last 5 

interactions. If this number is set to 0 then the agent will memorize the whole exercise. 

 

Semantics of relevant functions 

Set Reward – Sends the reward of the last interaction to the agent 

Set Observation – Sends the observation of the last interaction to the agent 

Get Action – Takes the action that the agent will make in this interaction 

 

Default when creating the object 

Move Controller is not defined, it must be defined before starting the interaction. 

Behavior is not defined, it must be defined before starting the interaction. 

Known actions are not defined, they must be defined before starting the interaction. 



The interaction history is automatically controlled by the agent, it don’t have to be managed 

by the programmer. 

The agent will memorize the whole exercise.



Evaluable Agent 

Extends Agent 

This represents the agent that will be evaluated. If an agent will be evaluated it must be an 

instance of this class. 

Here we can see the Evaluable Agent with their relations. 

 

Illustration 12 - Evaluable Agent diagram class 

 

Semantics of relevant functions 

Last Reward – It returns the last reward given to the agent 

Total Reward – It returns the average of rewards that the agent has had on the exercise so far. 

  



Rewards Generator Agent 

Extends Agent 

This represents a special agent that drops rewards on the environment (more precisely on the 

space), these agents form part of the Lambda Environment and must be always on each 

exercise. 

Here we can see the Rewards Generator Agent with their relations. 

 

Illustration 13 - Rewards Generator diagram class 

 

Semantics of relevant attributes 

Drop reward – This is the rewards that the reward generator will drop into the cell where he is 

located on each step. 

 

Semantics of relevant functions 

Get Drop Reward – It returns the reward that the reward generator drops 

 

Default when creating the object 

You indicate the rewards that the agent will drop. 

  



3. Construction and save an experiment 

 

So far there is no interface to make experiments, so they are defined manually using code. 

In this section is described a simple guide of how to construct, launch and save an exercise. 

 

First of all it’s necessary to create a Test, an Exercise, a Lambda Environment, a Space, and an 

Evaluable Agent. It is needed to relation all these objects between them. A space is in a 

environment, an environment is in an exercise, an exercise is in a test, the evaluable agent is 

an agent in the environment (environment.addAgent()), the evaluated agent is in the exercise 

and in the test (test/exercise.setEvaluableAgent()). 

Because the environment has created by default Good and Evil agents you can get them from 

the environment (getGoodAgent() and getEvilAgent()) 

The three objects InteractionType, StepWaiting and RewardsProvider must be created and set 

to their respective objects. Exercise: Interaction type, StepWaiting. Environment: 

RewardProvider. 

From here all the objects must be well relationed for a correct interaction. Now it’s time to 

configure all the parameters. 

There are two ways to create the space. It can be generated from scratch (generateSpace()) or 

created with a specified description (constructSpace(description)). When a space is generated 

from scratch it’s frequent that it doesn’t accomplish certain requirements, such not being 

strongly connected. To ensure these requirements, make a loop while they are not 

accomplished. 

For example:       do { space.generateSpace(); } while (!space.isStrongConnected()); 

All the agents must define their move controller and their behavior. Notice than even good 

and evil don’t have these by default. Also agents must have their known actions defined, if 

they must know all the actions of the system simply set with environment.getActions() so they 

know the same actions that the environment. 

Good and evil agents must have exactly the same behavior (MoveController and Behavior). So 

when constructing them the same object of MoveController must be set to either. Because the 

behavior of an agent must be exclusive to one agent, the function clone of behavior will give 

another object with the same behavior and this new object is set to the other reward 

generator. 

 



It is strongly recommended to reassign the default parameters of all the objects to have the 

environment how you really want. For example: not infinity memory for agents, consume 

rewards after the update of the space rewards… 

Before launching an exercise you can call the checkConsistency function in order to check if the 

exercise is consistent to be launched or, on the contrary, some relations or parameters have 

not been well instantiated. (exercise.checkConsistency()). If the exercise is not well built a 

RuntimeExecption will be launched showing where the problem was. 

 

 

This is an example of a creation of a test 

// The test 
Test test = InvestigationTest. getTest(); 
// The exercise 
Exercise exercise = new Exercise(); 
// The environment where we will make the interacti ons 
LambdaEnvironment environment = new LambdaEnvironment(); 
// The agent that will do the interactions 
EvaluableAgent agent = new EvaluableAgent( "Agente" ); 
// The space where agents will interact 
Space space = new Space(); 
// Take the partially generated good and evil agent s to configure them 
RewardsGeneratorAgent good = environment.getGoodAge nt(); 
RewardsGeneratorAgent evil = environment.getEvilAge nt(); 
 
// Relate all the objects properly 
test.setEvaluatedAgent(agent);  
exercise.setEvaluableAgent(agent); 
test.setExercise(exercise); 
exercise.setEnvironment(environment); 
environment.addAgent(agent); 
 
// Set the interaction type, the step waiting and t he rewards provider  
// and relate them with their respective objects 
InteractionType interactionType = new 
NumberOfInteractionsInteractionType(1000000); 
StepWaiting stepWaiting = new TimeDelayWaiting(); 
RewardsProvider rewardsProvider = new NoShareRewards(); 
exercise.setInteractionType(interactionType); 
exercise.setStepWaiting(stepWaiting); 
environment.setRewardsProvider(rewardsProvider); 
 
// Generate a new space and ensure it has the desir ed properties 
do { space.generateSpace(); } while (!space.isStrongConnected()); 
// Only after you have the desired space you can se t it to the 
// environment 
environment.setSpace(space); 
 
// Configure properly the three agents. Notice that  they are already 
// properly related with the environment, the exerc ise and the test. 
// Here it’s the configuration of the evaluable age nt 
IAgentMoveController moveController = new 
NumberOfMovementsMoveController(); 
AgentBehaviour behaviour = new OracleBehaviour(environment); 
agent.setKnownActions(environment.getActions()); 



agent.setMoveController(moveController); 
agent.setBehaviour(behaviour); 
// Here is the configuration of good and evil 
String pattern = 
PatternBehaviour. generatePattern(environment.getActions(), 10); 
PatternBehaviour goodBehaviour = new PatternBehaviour(pattern); 
good.setKnownActions(environment.getActions()); 
good.setMoveController(moveController); 
good.setBehaviour(goodBehaviour); 
// Notice that evil agent must have exactly the sam e behavior than  
// good, so set the same move controller and clone the behavior. 
PatternBehaviour evilBehaviour = goodBehaviour.clon e(); 
evilBehaviour.setAgent(evil); 
evil.setKnownActions(environment.getActions()); 
evil.setMoveController(moveController); 
evil.setBehaviour(evilBehaviour); 
// You can also configure all the parameters as you  like 
agent.setMaximumObservationsSaved(10); 
good.setMaximumObservationsSaved(10); 
evil.setMaximumObservationsSaved(10); 
environment.setRewardsConsumedBeforeRewardersUpdate CellRewards( true); 
 
// To start the test simply launch the start functi on. 
test.start(); 

// You can also launch an exercise without being in  a test, simply  
// don’t create the test object and launch the corr ect method of the  
// exercise. 
// You can launch an exercise using the function “i nteract()” 
exercise.interact() 
// If you want to launch it using a thread use the function “start()” 
exercise.start()  

 

// When the interaction is over you can get the tot al rewards of the  
// evaluated agent. Simply get the agent that it’s being evaluated (if  
// you don’t already have it) and take the total re ward. 
EvaluatedAgent agent = exercise.getEvaluatedAgent()  
agent.totalReward() 
 
 
 
// Finally if you want to export the results of the  execution of an  
// exercise to a “csv” file, you can call the stati c function  
// WriteExperiment located in the class Experiments File from package  
// files by passing as argument the exercise and th e destination  
// system file, if the file is not already created it will be created. 
files.ExperimentsFile.WriteExperiment(exercise, fil epath); 
 
// This function only works if the environment of t he exercise is a  
// Lamba Environment, if there is another type of e nvironment that 
// want to be saved, feel free to create your own f unction. 
 
 
This is a list of all the columns of the csv file b y order of 
appearance 
 



1.  Number of space sells 
2.  Number of space actions 
3.  Space Description 
4.  Rewarders Actions per Step 
5.  Rewarders Fixed Actions 
6.  Rewarders Behaviour 
7.  Pattern Description 
8.  Pattern Length 
9.  Number of interactions when rewarders where relocat ed 
10.  What kind of evaluable agent was doing the exercise  
11.  Number of interactions made in the session 
12.  Consumption order of the rewards (before or after u pdate)  
13.  Session Reward Decreasing Factor (2147483647 = Math .MAX_VALUE) 
14.  Evaluable agents consume rewards 
15.  Kind of rewards sharing 
16.  The total reward of the agent 
17.  All the rewards taken on each interaction, from fir st 

interaction to last interaction 
 
 
Here we can see an example of the generated file. 

 

Illustration 14 - Experiment file 

  



References 

 

[ANYNT] http://users.dsic.upv.es/proy/anynt/ 

 
[Hernández-Orallo, 2010] A (hopefully) non-biased universal environment class for measuring intelligence 
of biological and artificial systems. In M. Hutter et al., editor, Artificial General Intelligence, 3rd Intl Conf, 
pages 182–183. Atlantis Press, 2010 


