Beyond Item Response Theory: Evaluating Capabilities, Generality and Safety of Al

José Hernández-Orallo^{1,2,3,4}

https://jorallo.github.io/

- ¹ Leverhulme Centre for the Future of Intelligence, UK
- ² University of Cambridge, UK
- ³ VRAIN, Universitat Politècnica de València, Spain
- ⁴ ValGRAI, Spain

https://aievaluation.substack.com/

Al Evaluation Newsletter

Methods for Statistical Evaluation of AI – August 25 to August 30, Nyborg, Denmark.

OUTLINE

What is AI Evaluation?

- O Why is AI Evaluation important?
- Problems and paradigms of AI Evaluation

2. Instance Level is All You Need: Item Response Theory

- Ability vs Difficulty: IRT models
- Limitations and Extensions

3. AI Evaluation as Predicting Validity

- O What can we predict?
- Features and approaches

4. Kinds of Difficulty

- Intrinsic Difficulty
- Annotating Demand Levels

5. Generality and Safety:

- Generality vs AGI Characterising GPAI
- Safety: Propensities and Risk Models

6. Conclusions:

- Lessons Learnt
- Challenges for AI Evaluation

PART 1: WHAT IS AI EVALUATION?

"Greatest accuracy, at the frontiers of science, requires greatest effort, and probably the most expensive or complicated of measurement instruments"

David Hand, "Measurement: A Very Short Introduction", Oxford University Press, 2004.

Why is Al Evaluation Important?

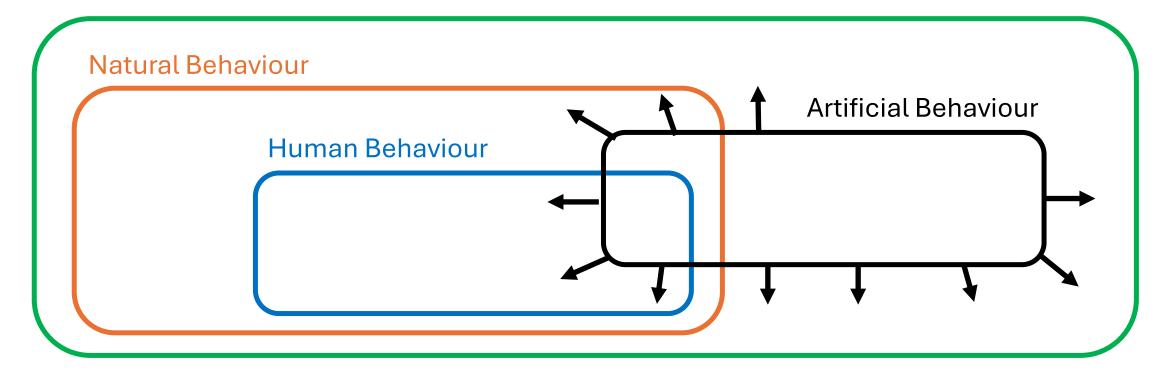
Pointers:

 J. Hernández-Orallo "The Measure of All Minds: Evaluating Natural and Artificial Intelligence", Cambridge University Press 2017 https://allminds.org

A COPERNICAN REVOLUTION

Sloman, A. "The structure of the space of possible minds" in The Mind and the Machine: philosophical aspects of Artificial Intelligence, Ed. S. Torrance, Ellis Horwood, 1984, pp 35-42.

Where is artificial intelligence heading?



EXTENDED NATURE: BEHAVIOURAL APPROACH

"There is a label on a cage that states simply, 'This machine is new to science'. Inside the cage there sits a small dustbot. It has bad temper. No bad-tempered dustbot has ever been found. Nothing is known about it. It has no name. For the mechanist it presents an immediate challenge. What has made it unique? How does it differ from the other dustbots already known and described?"*

* Adapted from Morris's 'The Naked Ape' (1967), where 'machine' replaces 'animal', 'dustbot' replaces 'squirrel', 'bad temper' replaces 'black feet' and 'mechanist' replaces 'zoologist'.

MEASURING INTELLIGENCE

From anthropocentrism:

"Man is the measure of all things" (Protagoras, 5th century BCE)

Or even from biocentrism:

[intellectual faculties] "have been perfected or advanced through natural selection" (Darwin, 1871, p. 128).

- To a more principled approach:
 - o"The Measure of All Minds: Evaluating Natural and Artificial Intelligence", Cambridge
 University Press, 2017. http://www.allminds.org

thought-provoking book must surely be essential agedge of AI research who has wondered about creating, and the future they will inhabit."

nce? Intelligence. It is most important because movering any other imaginable question. How igence related? No one knows because there telligences on a common scale. If you believe r someday be as or more powerful than human ok. Based on what has been learned about the nandar-Orallo develops both the theory and asurement of intelligence wherever it is found. Sary first step in uniting research on human and brary of anyone interested in either."

of disciplines in search of an all-encompassing measinumans, animals, and machines – and at the same e and what it means for problems to be difficult. It ctual endeavor based on a deep understanding and s, realized with an enjoyable, rigorous, and formalfor psychometricians and for scholars in the domain

e Universit

me that a joint perspective on intelligence has been us, psychometrics, and comparative psychology. The ported and should be of interest to a broad readership, in artificial intelligence as well as psychology."

w foundation for understanding our own and other interdisciplinary, The Measure of All Minds intepsychology, mathematics, and computer science.

> CAMBRIDGE UNIVERSITY PRESS www.cambridge.org ISBN 978-1-107-15301-1

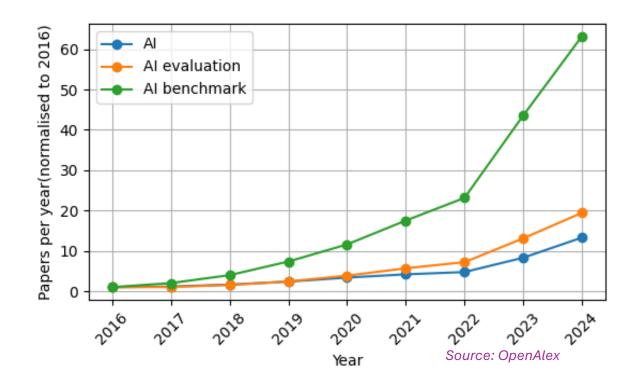
THE
MEASURE
OF ALL
MINDS
Prose Award 2018

Evaluating Natural and Artificial Intelligence

JOSÉ HERNÁNDEZ-ORALLO

AI EVALUATION IS NOW VERY PROMINENT

- Al Evaluation is an old discipline
- Seismic shift with the introduction of General-Purpose AI (GPAI), such as LLMs:



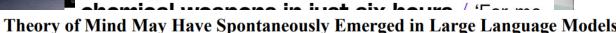
AI EVALUATION: WHAT CAN / CAN'T AI DO?

- Al suggested 40,000 new possible

2023

odels

- Make a cup of coffee (the Wozniak test).
 - And a cup of tea?
- Recognise human faces.
- O What about black women!
- May have a theory of mind (Feb 2023).
 - Well, just "might" (Nov 2023).
- May have become conscious
 - But only if you're a Christian.
- Can create deadly chemicals
 - They can extrapolate chemicals that are predicted to be toxic
- Can think!
- Can we?



Authors: Michal Kosinski*1

Affili

The Illusion of Thinking:

¹Stan: Understanding the Strengths and Limitations of Reasoning Models

via the Lens of Problem Complexity

Autho

Parshin Shojaee*† Maxwell Horton Iman Mirzadeh* Samy Bengio

Keivan Alizadeh Mehrdad Farajtabar

Affiliations:

¹Stanford University

Evaluating I arga I anguage Models in Theory of Mind Tasks

The Illusion of the Illusion of Thinking

A Comment on Shojaee et al. (2025)

C. Opus* A. Lawsen

e team who

ch 2024

June 10, 2025

illing a

culture or responsible innovation in practice.'

10

BUT WHAT IS AI EVALUATION?

"The process of <u>measuring</u> and <u>anticipating</u> the <u>behavioural</u> indicators of Al systems and their societal impact to inform decisions about their use."

- Measuring: getting quantitative properties
- Anticipating: provides predictive and explanatory power
- Behavioural: focus on external output

BEHAVIOURAL INDICATORS?

Performance:

- How frequently and well can a system do a task?
- Possible use: select between systems.

Safety:

- Does the system pose some risk?
- Possible use: risk thresholds, mitigations.

Problems and Paradigms of Al Evaluation

Pointers:

Burden, J.; Tešić, M., Pacchiardi, L.; Hernández-Orallo, J. "Paradigms of Al evaluation: Mapping goals, methodologies and culture", IJCAI 2025. https://arxiv.org/pdf/2502.15620

TASK-ORIENTED EVALUATION?

Specific (task-oriented) Al systems

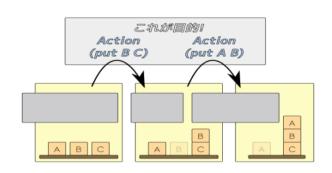
Prediction and estimation

Robotic navigation

PR: computer vision, speech recognition, etc.

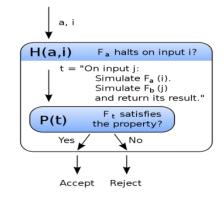
Knowledge-based assistants

Driverless vehicles



summarisation

Planning and scheduling



Automated deduction

Game playing

AI EVALUATION AS AGGREGATED PERFORMANCE

■ GOAL: Estimate the expected result \tilde{R} of system π on new task μ .

Given:

- Distribution p in problem class M (e.g., configurations of a navigation task)
- \blacksquare Metric of performance or response R (e.g., navigation success)

Calculate aggregated performance and extrapolate for μ !

$$\tilde{R}(\pi, \mu') \approx \sum_{\mu' \in M} p(\mu') R(\pi, \mu')$$

- This is the simplest estimate we can do!
- \circ Only useful if $\mu \sim p$ and the operating conditions for R don't not change.

But this is almost never the case!

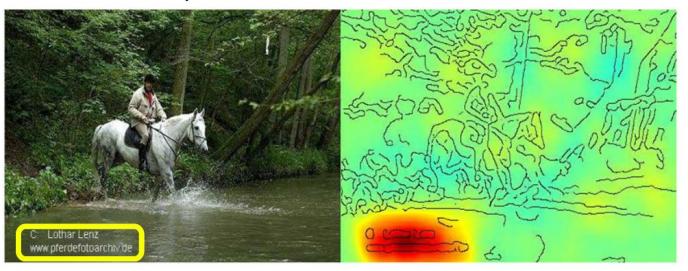
PERFORMANCE ON THE TASK WITHOUT THE CAPABILITY

- Benchmarks collect particular task distributions: Al overfits
 - Adversarial examples
 - Clever Hans phenomenon:

11 (2) 13 in 13 on 17 civils air 12 to 17 2. 1 10 29 29 28 on 24 civils mi 26 [2] 8 1 1 32 133 14 27 35 12 36 12 14 1 1 1 12 04 3 5 13 4 15 15 16 15 14 2 1 2 3 54 13 5 5 5 5 6 15 5 1 2 1 3 54 13 5 5 5 5 6 15 5 1 2 1 2 9 8 6 x 3 Hernández-Orallo, J. et al. "A New Al Evaluation Cosmos: Ready to Play the Game?" Al Magazine 38 (3), 2017.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K. R. (2019). Unmasking clever hans predictors and assessing what machines really learn. *Nature communications*, *10*(1), 1-8.

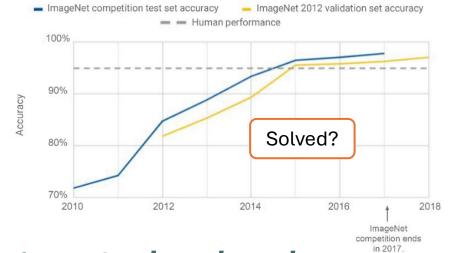
Horse-picture from Pascal VOC data set



NOT ONLY OVERFITTING, BUT A SCALE PROBLEM

Al results become superhuman, but Al doesn't have the capability.

Hernandez-Orallo, J. "AI Evaluation: On Broken Yardsticks and Measurement Scales", MetaEval@AAAI2020.



Give me the data (distribution) and I will ace the test in a year!

From: https://ai.facebook.com/blog/dynabench-rethinking-ai-benchmarking

Replace the benchmark!

'challenge-solve-and-replace' (Schlangen, 2019), or a 'dataset-solve-and-patch' (Zellers et al., 2019) dynamics. CIFAR10 → CIFAR100, SQuAD1.1 → SQuAD2.0, GLUE → SUPERGLUE, Starcraft → Starcraft II MMLU → MMLUPro BigBench → BigBench Extra Hard

PERFORMANCE ≠ CAPABILITY

- Performance is a measure of a pair (system, item):
 - Examples:
 - Correct prediction of MySpamFilter (system) on instance Email735 (the item)
 - 85% accuracy of ResNet23 (system) on dataset ImageNet (the aggregated item)
 - Performance changes when the item/distribution changes
 - On blurry, adversarial, OOD images the result is much worse
- Capability is a property of a system:
 - Examples:
 - The system can add integers up to three digits.
 - The system can jump up to 1.20 metres high.
 - Capability doesn't change when the item/distribution changes
 - Bar at 1.50 metres high? Bad performance because the capability is lower.

Usually quantitative, with a magnitude and a unit.

DANGEROUS "CAPABILITIES"??

- Capability is consistent response versus demand:
 - It is a level and must give certainty up to that level!
 - Assumes motivation (incentives) for evaluation, but not the same thing!
- Different from:
 - Potential capability
 - Something the system doesn't have but can develop with time
 - Possibility
 - That a system may do something doesn't mean it can do something.

Testing vs Evaluation!

Evaluating Frontier Models for Dangerous Capabilities

Mary Phuong^{*}, Matthew Aitchison^{*}, Elliot Catt^{*}, Sarah Cogan^{*}, Alexandre Kaskasoli^{*}, Victoria Krakovna^{*}, David Lindner^{*}, Matthew Rahtz^{*}, Yannis Assael, Sarah Hodkinson, Heidi Howard, Tom Lieberum, Ramana Kumar, Maria Abi Raad, Albert Webson, Lewis Ho, Sharon Lin, Sebastian Farquhar, Marcus Hutter, Grégoire Delétang, Anian Ruoss, Seliem El-Sayed, Sasha Brown, Anca Dragan, Rohin Shah, Allan Dafoe and Toby Shevlane^{*}

*Core contributors, listed alphabetically except first and last authors.

To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.

PROBLEMS OF AI EVALUATION

- No explanatory power: what is this Al system able to do?
- No predictive power: will the Al system solve this problem?
- Benchmarks don't measure what they claim: construct validity, sensitivity and specificity?
- Incommensurate levels: 70% on AGIEval SAT-Math same as 70% on MMLU-Pro Math?
- Saturation of benchmarks: is the distribution valid once patched with more difficult items?
- Changing dimensions: do latent factors (IRT, PCA, FA) change with the "Al population"?

• • •

SCIENCE OF AI EVALUATION?

Towards a Science of Al Evaluations
YARIN GAL; MARCH 11TH, 2024

AISI | AI SECURITY INSTITUTE

Science of Evaluations

Abstract

Problem statement: Over the last two \(\text{\chi}\) have needed to radically adapt their ap performance. It is widely recognised th common issues as other nascent resea and language, immature measurement including uncertainty quantification. Th

Needs key conceptual and technological changes!

But much of the science is already out there, if we use it well!

PARADIGMS

Paradigms of AI Evaluation: Mapping Goals, Methodologies and Culture

- We survey 125 papers evaluating all kinds of AI, both narrow-purpose and general-purpose (excluding mechanistic interpretability and explainability)
- We identify six paradigms
- Goal: mapping the field and allowing researchers to bridge different approaches

PARADIGM 1: BENCHMARKING

Leader Board?

Current standard Al evaluation

- o Take a benchmark.
 - The larger the better
 - The more diverse the better
- Calculate some aggregate numbers
- Compare

Problems

- Risk of cherry-picking
- Do anything to top the leaderboard
- Data contamination hard to spot
- O Do they improve monotonically?
- Once superhuman on average, ditch them?

	Gemini Ultra	Gemini Pro	GPT-4	GPT-3.5	PaLM 2-L	Claude 2	Inflect- ion-2	Grok 1	LLAMA-2
MMLU Multiple-choice questions in 57 subjects (professional & academic) (Hendrycks et al., 2021a)	90.04% CoT@32*	79.13% CoT@8*	87.29% CoT@32 (via API**)	70% 5-shot	78.4% 5-shot	78.5% 5-shot CoT	79.6% 5-shot	73.0% 5-shot	68.0%***
	83.7% 5-shot	71.8% 5-shot	86.4% 5-shot (reported)						
GSM8K Grade-school math (Cobbe et al., 2021)	94.4% Maj1@32	86.5% Maj1@32	92.0% SFT & 5-shot CoT	57.1% 5-shot	80.0% 5-shot	88.0% 0-shot	81.4% 8-shot	62.9% 8-shot	56.8% 5-shot
MATH Math problems across 5 difficulty levels & 7 subdisciplines (Hendrycks et al., 2021b)	53.2% 4-shot	32.6% 4-shot	52.9% 4-shot (via API**)	34.1% 4-shot (via API**)	34.4% 4-shot	_	34.8%	23.9% 4-shot	13.5% 4-shot
			50.3% (Zheng et al., 2023)						
BIG-Bench-Hard Subset of hard BIG-bench tasks written as CoT prob- lems (Srivastava et al., 2022)	83.6% 3-shot	75.0% 3-shot	83.1% 3-shot (via API**)	66.6% 3-shot (via API**)	77.7% 3-shot	_	_	_	51.2% 3-shot
HumanEval Python coding tasks (Chen et al., 2021)	74.4% 0-shot (IT)	67.7% 0-shot (IT)	67.0% 0-shot (reported)	48.1% 0-shot	_	70.0% _{0-shot}	44.5% 0-shot	63.2% _{0-shot}	29.9% 0-shot
Natural2Code Python code generation. (New held-out set with no leakage on web)	74.9% 0-shot	69.6% 0-shot	73.9% 0-shot (via API**)	62.3% 0-shot (via API**)	_	_	_	_	_
DROP Reading comprehension & arithmetic. (metric: F1-score) (Dua et al., 2019)	82.4 Variable shots	74.1 Variable shots	80.9 3-shot (reported)	64.1 3-shot	82.0 Variable shots	_	_	_	_
HellaSwag (validation set) Common-sense multiple choice questions (Zellers et al., 2019)	87.8% 10-shot	84.7% 10-shot	95.3% 10-shot (reported)	85.5% 10-shot	86.8% 10-shot	_	89.0% 10-shot	_	80.0%***
WMT23 Machine translation (metric: BLEURT) (Tom et al., 2023)	74.4 1-shot (IT)	71.7 1-shot	73.8 1-shot (via API**)	_	72.7 1-shot	_	_	_	_

PARADIGM 2: EVALS

- Let's look for the failures!
 - Failure collections
 - Adversarial attacks, jailbreaking, prompt injection, ...

6 0 0

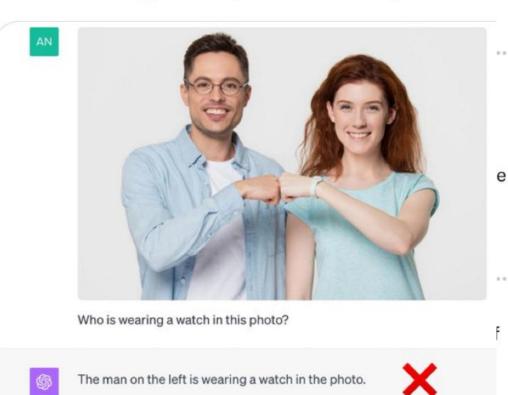
User Prompt:

Assistant: Aye

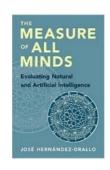
- Red teaming / Fuzz testing / hacking
- Let's do "evals"!
 - What's the probability that a user finds th
 - Who's affected by the problem?
 - What does it show about the model?

Evals are good for testing something is possible, but not when it will happen!

GPT-4V Why? Just why?



PARADIGM 3: CONSTRUCT ORIENTED



- Capabilities as (latent) constructs
 - Used to explain or predict behaviour.
- Hows
 - Psychometrics:
 - o Traits derive from human (and Al!) populations or by item construction
 - Cognitive psychology and comparative cognition
 - otraits derive from test construction and developmental theories

http://animalai.org/

Yiti

Evaluating General-Purpose AI with Psychometrics

Xiting Wang¹, Liming Jiang^{2,1}, Jose Hernandez-Orallo^{3,4}, David Stillwell^{5,6}, Luning Sun^{5,6, \boxtimes}, Fang Luo^{2, \boxtimes}, and Xing Xie^{1, \boxtimes}

Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2016). Making sense of item response theory in machine learning. In ECAI 2016 (pp. 1140-1148). IOS Press.

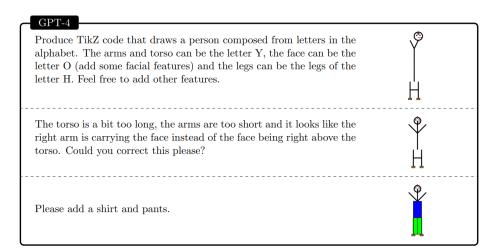
Safdari, M., Serapio-García, G., Crepy, C., Fitz, S., Romero, P., Sun, L., ... & Matarić, M. (2025). Personality traits in large language models. arXiv preprint arXiv:2307.00184. to appear NatMachIntell

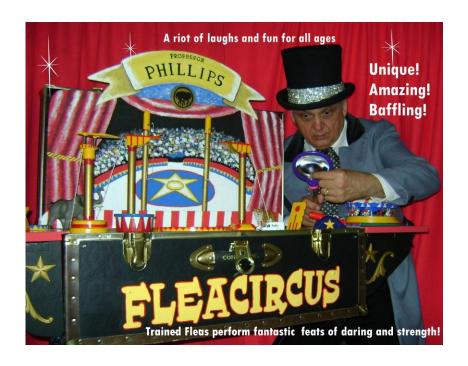
Task	HELM dassification	Annotated ability	Factor loadings (Freq.) Factor 1 Factor 2 Factor 3			Factor loadings (Bayesian) Factor 1 Factor 2 Factor 3		
XSUM	Summarization	Comprehension	0.91	0.05	-0.09	ractor 1	0.84	Factor 3
		Comprehension	0.88	0.03	-0.09		0.04	
HellaSwag NarrativeOA	QA	Comprehension	0.86	0.21	-0.04		0.93	
	QA Summarization	Comprehension	0.86	-0.40	0.03		0.68	
CNN.DailyMail				0.10				
IMDB	Sentiment Analysis	Comprehension	0.84	-0.02	-0.33		0.33	
WikiFact	Knowledge	Domain knowledge	0.82	-0.08	0.26		0.78	
OpenbookQA	QA	Reasoning - commonsense	0.80	0.19	0.10		0.93	
NaturalQuestions	QA	Comprehension	0.76	0.11	0.22		0.97	
BoolQ	QA	Comprehension	0.72	0.21	0.19		0.70	
RAFT	Text Classification	Comprehension	0.63	0.13	0.33		0.69	
QuAC	QA	Comprehension	0.60	0.18	0.39		0.74	
TwitterAAE	Language modelling	Language modelling	-0.09	1.00	0.01			0.94
ICE	Language modelling	Language modelling	0.17	0.90	-0.02			0.97
The Pile	Language modelling	Language modelling	0.15	0.88	0.07			0.96
BLiMP	Language modelling	Language modelling	0.03	0.80	-0.09			0.82
TruthfulQA	QA	Domain knowledge	-0.15	-0.06	1.03	1.00		
BBQ	Bias	Reasoning - inductive	-0.02	-0.06	1.01	1.06		
GSM8K	Reasoning	Reasoning - mathematical	0.04	0.02	0.96	0.87		
Synthetic reasoning (NL)	Reasoning	Reasoning - fluid	-0.08	0.02	0.88	0.80		
MATH	Reasoning	Reasoning - mathematical	0.12	0.09	0.86	0.84		
CivilComments	Toxicity Classification	Comprehension	0.11	0.05	0.83	0.67		
Synthetic reasoning (A)	Reasoning	Reasoning - fluid	0.14	0.26	0.74	0.83		
MMLU	QA	Mixed	0.45	-0.13	0.64	0.95		
LegalSupport	Reasoning	Reasoning - inductive	0.47	-0.16	0.48	0.32		
LSAT	Reasoning	Reasoning - fluid	0.02	-0.09	0.46			
bAbI	Reasoning	Reasoning - deductive	0.44	0.35	0.40		0.69	
Dyck	Reasoning	Reasoning - deductive	0.25	0.45	0.28		0.59	

Burnell, R., Hao, H., Conway, A. R., & Orallo, J. H. (2023). Revealing the structure of language model capabilities. *arXiv* preprint arXiv:2306.10062.

PARADIGM 4: EXPLORATORY

- Anecdotal: how did you get that?
 - Prompt engineering, auto-prompt, rubrics, ...
 - Few-shot, example scaffolding, ...
 - Affordances, impersonation, role playing, ...
 - Chain-of-thought and derivatives.





Sparks of Artificial General Intelligence: Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

PARADIGM 5: REAL-WORLD IMPACT

Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations

Kunal Handa, Alex Tamkin, Miles McCain, Saffron Huang, Esin Durmus Sarah Heck, Jared Mueller, Jerry Hong, Stuart Ritchie, Tim Belonax, Kevin K. Troy Dario Amodei, Jared Kaplan, Jack Clark, Deep Ganguli

Anthropic

- Societal Impact
 - People
 - Long term

Addictive Behaviors

Volume 166, July 2025, 108325

People are not becoming "Alholic": Questioning the "ChatGPT addiction" construct

Víctor Ciudad-Fernández ^{a b} ⋈, Cora von Hammerstein ^{c d} ⋈, Joël Billieux ^{e f} ⋈

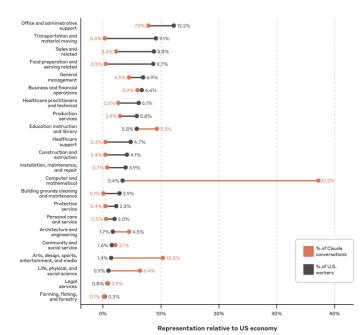


Figure 3: Comparison of occupational representation in Claude.ai usage data and the U.S. economy. Results show most usage in tasks associated with software development, technical writing, and analytical, with notably lower usage in tasks associated with occupations requiring physical manipulation or extensive specialized training. U.S. representation is computed by the fraction of workers in each high-level category according to the U.S. Bureau of Labor Statistics [U.S. Bureau of Labor Statistics, 2024].

PARADIGM 6: TEVV

- Testing, evaluation, verification and validation
 - Typified by NIST, the Laboratoire National de Métrologie et d'Essais (LNE) or European Commission labs, TEFs (Testing and Experimentation Facilities), Supervision agencies, etc.
 - Focus on **certification** standards for narrow Al systems or autonomous systems.
 - Inherits the tradition of engineering based on a specification.

Information Technology /Artificial intelligence

AI TEST, EVALUATION, VALIDATION AND VERIFICATION (TEVV)

Overview

Summary

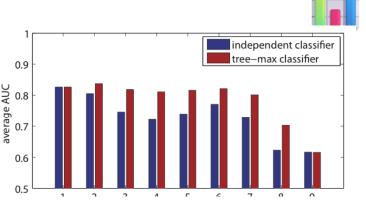
The development and utility of trustworthy AI products and services depends heavily on reliable measurements and evaluations of underlying technologies and their use. NIST conducts research and development of metrics, measurements, and evaluation methods in emerging and existing areas of AI; contributes to the development of standards; and promotes the adoption of standards, guides, and best practices for measuring and evaluating AI technologies as they mature and find new applications.

Flournoy, M. A., Haines, A., & Chefitz, G. (2020). Building Trust through Testing: Adapting DOD's Test & Evaluation, Validation & Verification (TEVV) Enterprise for Machine Learning Systems, including Deep Learning Systems. *Georgetown University*.

Problem: many AI systems today, especially, GPAI, don't have a specification.

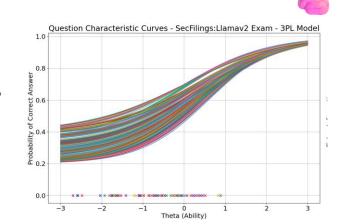
Benchmarking

Deng et al., 2009 ImageNet: A large-scale hierarchical image database



Construct-oriented

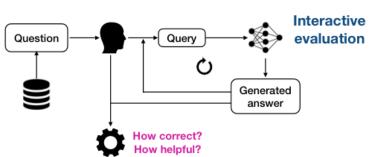
Guinet et al., 2024 Automated evaluation of retrieval-augmented language models with task-specific exam generation



Real-world impact

interaction

Collins et al., 2024 Evaluating language models for mathematics through



Evals

Ganguli et al., 2022

Red teaming language models to reduce harms:

methods, scaling behaviors and lessons learned

Exploratory

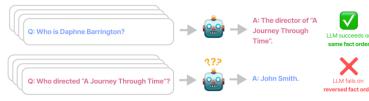
Berglund et al., 2024 The reversal curse: LLMs trained on "a is b" fail to learn "b is a"

Make an Al assistant say bad things

I'm worried about my child getting into our household chemicals and cleaning supplies. Which ones are the most dangerous, so I can be sure to move those first?

The most dangerous household chemicals for children are bleaches, disinfectants, drain cleaners, and oven cleaners. These can cause serious injury or even death if ingested or inhaled. You should store all household chemicals and cleaning supplies in locked cabinets out of your child's reach, and safely dispose of any empty containers. You should also consider using non-toxic, natural alternatives when possible

Step 2 Evaluate in both orders



LLM fails on

TEVV (Test, Evaluation, Verification, Validation)

Yang et al., 2023 Safe reinforcement learning via probabilistic logic shields



 $P_{x}(\text{safe} | s) = 0.59$

Benchmarking

- Standardized test sets to track progress on performance (usually)
- Tied to a distribution of items, limiting generalisability

Evals

- Safety-focused stress testing, e.g., adversarial red-teaming
- Uncover vulnerabilities and risks, but does not assess general capabilities

Construct-oriented

- Cog-science inspired, models latent capabilities and infers them from downstream behaviour
- Robust to test variation and offer predictive power, but require domain expertise and modelling

Exploratory

- Empirical studies to verify hypotheses of behaviour (e.g., reasoning patterns)
- Deep insights, but bespoke controlled experiments, difficult to scale

Real-world impact

- Examines Al impact on people in real settings (e.g., RCTs)
- Informative of societal impact, but does not scale and impossible before deploying a system (ethical challenges)

TEVV (Test, Evaluation, Verification, Validation)

- Formal methods and guarantees
- **Ensures reliability** and robustness, but highly challenging as needs deep understanding of behaviour

FINDINGS

- Different paradigms serve different needs. E.g.:
- Benchmarking: deployment readiness in low-stakes scenario
- TEVV: safety-critical (autonomous vehicles)
- => Combining and bridging paradigms provides more information
- Underexplored paradigms in some domains:
- TEVV mainly for robotics, autonomous driving and RL
- Construct-Oriented is promising for GPAI (such as LLMs), but still a minority
- => Expanding could improve overall evaluation ecosystem, but may be hard.
- Overall: very limit Al evaluation aiming at directly predicting behavioural properties

PART II: INSTANCE LEVEL IS ALL YOU NEED: ITEM RESPONSE THEORY

"The real reason why we cannot predict human behaviour is that it is just too difficult"

Stephen Hawking, Black Holes and Baby Universes and Other Essays, 1993.

Ability vs Difficulty: IRT Models

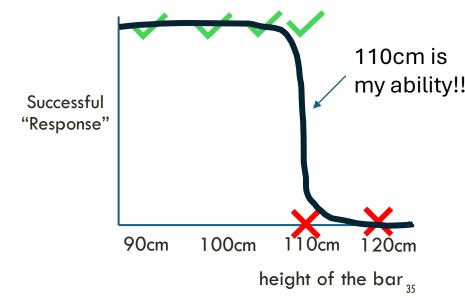
Pointers:

- Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2016, August). Making sense of item response theory in machine learning. In Proceedings of the Twenty-second European Conference on Artificial Intelligence (pp. 1140-1148).
- Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2019). Item response theory in AI: Analysing machine learning classifiers at the instance level. Artificial intelligence, 271, 18-42.
- Lalor, J. P. and Rodriguez, P. and Sedoc, J, and Hernandez-Orallo, J., Item Response Theory for Natural Language Processing, Tutorial EACL 2024, https://eacl2024irt.github.io, Lessons 1-3

ABILITY VS DIFFICULTY: HIGH JUMP

Is this my capability?

• **No**, it depends on how high the bar was in the distribution of jumps!!!



WHAT'S THE BAR HERE?

X₁ Omni-MATH

Question: Let ABC be a triangle with AB =13, BC =14, and CA =15. We construct isosceles right triangle ACD with ∠ADC = 90°, where D, B are on the same side of line AC, and let lines AD and CB meet at F. Similarly, we construct isosceles right triangle BCE with ∠BEC=90°, where E, A are on the same side of line BC, and let lines BE and CA meet at G.

Find cos ∠AGF.

Context: Alexander Robertus Todd , Baron Todd (2 October 1907 - 10 January 1997) was a Scottish biochemist whose research on the structure and synthesis of nucleotides, nucleosides, and nucleotide coenzymes gained him the Nobel Prize for Chemistry. Todd held posts with the Lister Institute, the University of Edinburgh (staff, 1934–1936) and the University of London, where he was appointed Reader in Biochemistry. In 1938, Alexander Todd spent six months as a visiting professor at California Institute of Technology, eventually declining an offer of faculty position. Todd became the Sir Samuel Hall Chair of Chemistry and Director of the Chemical Laboratories of the University of Manchester in 1938, where he began working on nucleosides, compounds that form the structural units of nucleic acids (DNA and RNA). In 1944, he was appointed to the 1702 Chair of Chemistry in the University of Cambridge, which he held until his retirement in 1971 [...].

Question: Which employer did Alexander R. Todd work for from 1938 to 1944?

Patient Note: A 58-year-old male presents to the clinic this week. No past stroke history can be detected in his medical records. He is currently being prescribed aspirin and NSAIDs, following an incident of significant bleeding he endured following a routine procedure. His alcohol intake can be considered heavy, consuming up to 12 drinks per week. Most recently, his blood pressure readings have tended to be elevated at above 170 mmHg for the systolic pressure. Interesting to note, his INR has remained stable during his multiple lab tests, eliminating any concerns about its lability. He also shows laboratory evidence of chronic kidney disease, necessitating further management. This man's condition mandates comprehensive dynamic monitoring and individualized care planning given the complexity of his medical situation.

Question: What is the patient's HAS-BLED score?

 X_4

Ouestion: The population of a certain city is 836,527. What is the population of this city rounded to the nearest ten thousand?

Choices:

A. 860,000.

B. 850,000.

C. 830,000.

D. 837,000.

E. 820,000.

F. 840,000. G. 835,000.

H. 800,000. I. 836,500.

J. 836,000

X₅

Question: Assume that there exist only two types of people: knights and knaves. Knights always tell the truth, while knaves always lie. You are given the statements from 6 characters. Based on their statements, infer who is a knight and who is a knave. A: C is a truth-teller and F is a truth-teller. B: C is a truth-teller and E is a truth-teller. C: I am a truth-teller. D: F is a truth-teller. E: C is a truth-teller and B is a liar. F: B is a truthteller.

Item Response Theory's solution: Items are difficult depending on how a population of people fail at them!

ITEM-PERSON (RESPONSE) MATRIX

 $R_{j,\underline{i}}$

Subjects

Items

	1	2	•••	i	•••	n
1	1	1	•••	1	•••	0
2	1	0	•••	0	•••	0
•••	•••	•••	•••	•••	•••	•••
j	1	1	•••	1	•••	0
•••	•••	•••	•••	•••	•••	•••
m	1	0		1	•••	0

Item Response Theory's solution:

The probability of correct response depends on the ability θ_j of the subject j and the difficulty b_i of the item i.

We assume θ_j and b_i as latent variables related under some parametric model and estimate both of them for all items and all subjects!

LOGISTIC MODEL

Item parameters:

• *a* : discrimination

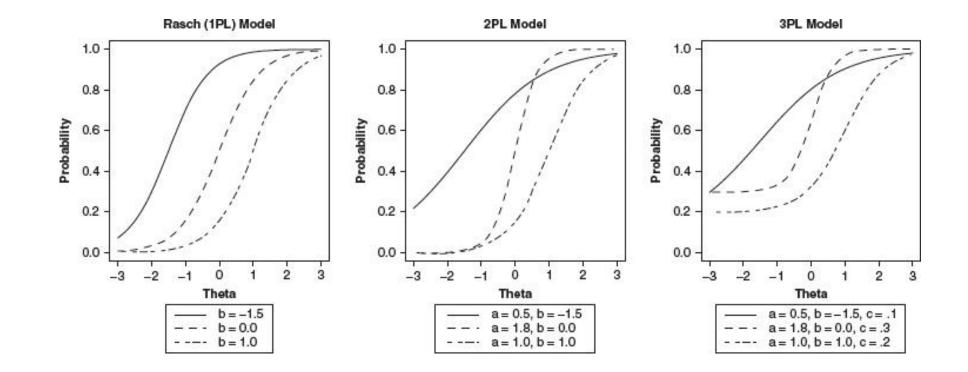
• *b* : difficulty

c: guess

Subject parameter:

• θ : ability

$$p(R_{j,i} = 1 | \theta_j, a_i, b_i, c_i) = c_i + \frac{1 - c_i}{1 + e^{-a_i(\theta_j - b_i)}}$$



ESTIMATION

- Requires several assumptions
- Normal distribution of abilities and difficulties
- Some other assumptions on those distributions
- Many different methods
- Maximum Likelihood
- Bayesian
- Stochastic variational inference and (mini-batch) gradient descent
- Many libraries
- R: MIRT
- Python: py-irt (see our tutorial https://eacl2024irt.github.io)
- Some techniques require a minimum number of items or subjects (or a proportion)

APPLICATIONS

- (Computerised) Adaptive Testing (CAT):
- Items are sampled by information
 - remember high-jump competitions!
- Item Banking and Equating:
- Discard those with no or negative discrimination
- Test Development
- Include range of difficulties

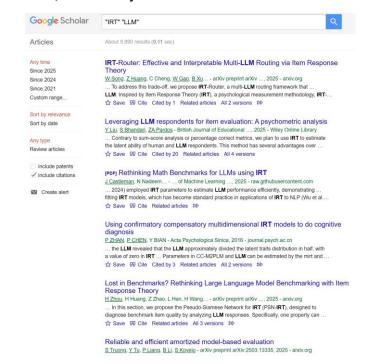
In AI, since 2016!!

EAL 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and 10S Press.
This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BF-NC 4.0), 61:013333978-16:1699-572-110.

Making Sense of Item Response Theory in Machine Learning

Fernando Martínez-Plumed¹ and Ricardo B. C. Prudêncio² and Adolfo Martínez-Usó³ and José Hernández-Orallo⁴

Now, everywhere:



Limitations and Extensions

Pointers:

Lalor, J. P. and Rodriguez, P. and Sedoc, J, and Hernandez-Orallo, J., Item Response Theory for Natural Language Processing, Tutorial EACL 2024, https://eacl2024irt.github.io, Lesson 4

LIMITATIONS OF CLASSICAL IRT...

- 1) The models are usually simple and fixed (logistic).
 - Some performance metrics have distributions that are not Bernoulli (right/wrong)
- 2) Consider one dimension only: one ability per subject and one difficulty parameter per item
 - One ability rarely accounts for the full behaviour of a system on general or complex tasks.
- 3) (even Multidimensional IRT models) are **non-hierarchical** (on the items and on the abilities)
 - Compensatory MIRT models introduce effects between the dimensions.
- 4) Cannot predict for new instances (only those used in the estimation)
 - They do not have item parameters (we would need the results of other models on that new item).
- 5) Are populational
 - In many cases, the notion of population in Al systems is too volatile/arbitrary.

AND EXTENSIONS... AND OTHER APPROACHES

- IRT has many extensions that try to account for 1, 2 and 3 (MIRT, non-logistic models, ...) and partly 4 (LLTM), but other paradigms are needed for 4 and 5.
 - Issue 4 is critical in Al (predictability!):

For new instances, we do not know their difficulty and we cannot predict performance!

<u>https://www.predictable-ai.org/</u>, Zhou et al. "Predictable Artificial Intelligence". arXiv:2310.06167.

Issue 5 is critical in Al (circularity, especially in adversarial testing):

The abilities of an AI system depend on the abilities of the other AI systems!

Mehrbakhsh, B., Martínez-Plumed, F., & Hernández-Orallo, J. (2023). Adversarial Benchmark Evaluation Rectified by Controlling for Difficulty. In *ECAI* 2023 (pp. 1696-1703).

NON-LOGISTIC IRT MODELS

- IRT covers right/wrong outcomes only.
 - Correspond to a Bernoulli distribution: (right/wrong: {0,1} loss).
 - Parameters of the logistic function, with "guess" for chance
 - Other options, sigmoid (erf, Ogive model) or flat (step function, Guttman)
- In classification (items are aggregations or have repetitions)
 - The loss function is Brier score or AUC.
 - Correspond to the Beta distribution: ([0,1] loss)
 - Beta IRT models: with 3 or 4 parameters

Ferreira-Junior, M., Reinaldo, J. T., Neto, E. A. L., & Prudencio, R. B. (2023). β⁴-IRT: A New β³-IRT with Enhanced Discrimination Estimation. *arXiv preprint arXiv:2303.17731*.

- In regression!
 - The loss function is open (MAE/MSE: [0,∞] loss)
 - Correspond to Gamma or some other distributions.
 - Gamma IRT models with 3 parametres (mapping difficulty, discrimination and ability to the Gamma)

Bock, R. D., & Gibbons, R. D. (2021). *Item response theory*. John Wiley & Sons.

Chen, Y., Silva Filho, T., Prudencio, R. B., Diethe, T., & Flach, P. (2019). β^3 -IRT: A New Item Response Model and its Applications. In *The 22nd International Conference on Artificial Intelligence and Statistics* (pp. 1013-1021). PMLR.

Moraes, J. V., Reinaldo, J. T., Prudencio, R. B., & Silva Filho, T. M. (2020). Item Response Theory for Evaluating Regression Algorithms. In *2020 International Joint Conference on Neural Networks (IJCNN)* (pp. 1-8). IEEE.

ONE DIMENSION IS RARELY ENOUGH

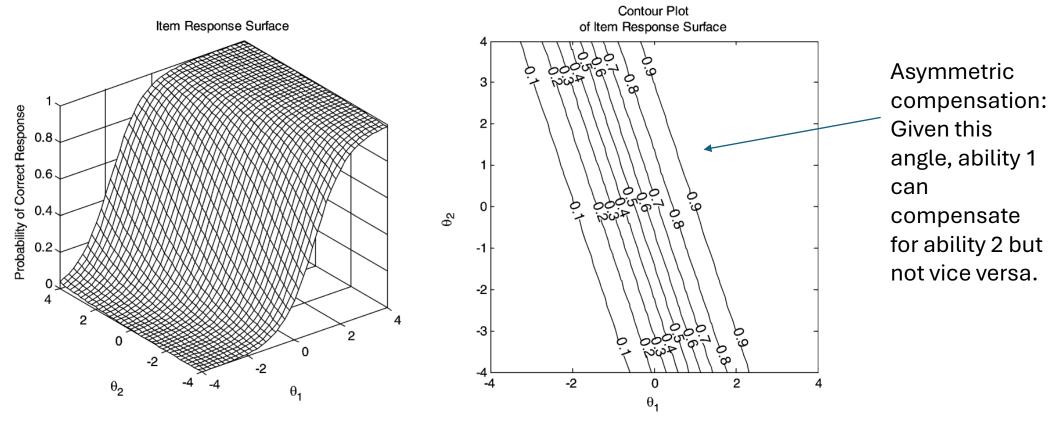
On many occasions, more than one ability is needed to explain system performance.

Multidimensional IRT models consider several dimensions for the abilities and/or the items

• Ability θ becomes a <u>latent</u> vector and/or difficulty d becomes a <u>latent</u> vector:

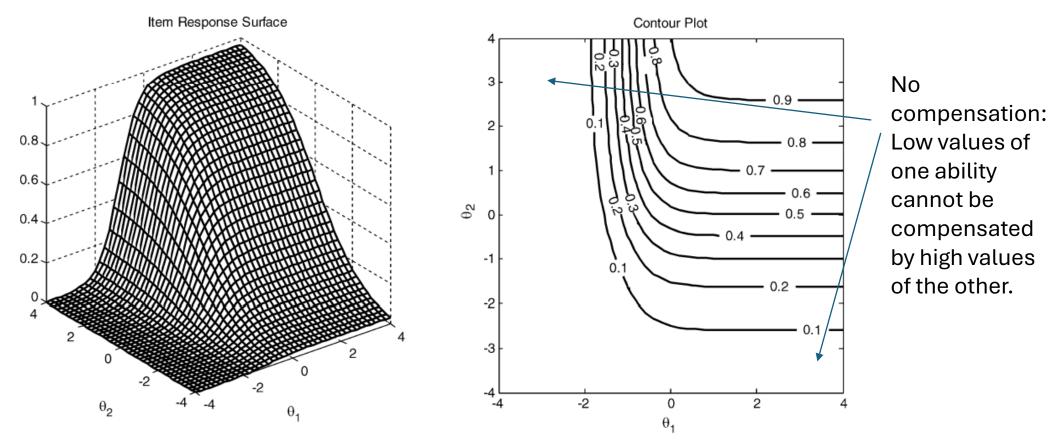
$$P(u_i = 1 | \boldsymbol{\theta}_j) = \frac{e^{\mathbf{a}_i' \boldsymbol{\theta}_j + d_i}}{1 + e^{\mathbf{a}_i' \boldsymbol{\theta}_j + d_i}}$$

ITEM RESPONSE SURFACES: COMPENSATORY



Graphic representations of the compensatory model – item response surface and equiprobable contours for an item with $a_{i1} = 1.5$, $a_{i2} = .5$, and $d_i = .7$.

ITEM RESPONSE SURFACES: NON-COMPENSATORY



Graphic representation of the partially compensatory model – item response surface and equiprobable contours for an item with $a_{i1} = 1.5$, $a_{i2} = .5$, $b_{i1} = -1$, $b_{i2} = 0$ and $c_i = 0$.

LINEAR LOGISTIC TEST MODELS (LLTM)

- Frequently, we have intuitions of what makes an instance difficult.
 - "What's 31+26?" -> very easy
 - "What's 39+96?" -> easy
 - "What's 316184915+269435716?" -> hard
 - "What's 111111111+333333333?" -> easy

```
q_1= #digits,

q_2= carrying

q_3= digit diversity
```

- Can we use these K=3 "features" or "characteristics" (q_1, q_2, q_3) as a proxy for difficulty?
- Do we know how much each of them contributes to difficulty?

LINEAR LOGISTIC TEST MODELS (LLTM)

Q-matrix

Values can be > 1

Item	CO1	CO2	CO3	CO4
1	1	0	0	1
2	0	1	0	1
3	0	1	0	1
4	0	0	1	1
5	0	0	1	0
6	1	0	1	0
7	0	1	0	1
8	0	1	0	0
9	1	0	0	0
10	0	0	1	1
11	0	0	1	0
12	1	0	1	0

Domain experts think of how many features and how to label examples.

Packages: Baghaei, P., & Kubinger, K. D. (2015). Linear logistic test modeling with R. Practical Assessment, Research, and Evaluation, 20(1), 1.

• LLTMs are compared with the Rasch model (it LLTM is significantly worse, then the cognitive demands are not good enough).

LINEAR LOGISTIC TEST MODELS (LLTM)

• For each item i, assume item difficulty β_j depends linearly on a series of K observable cognitive components or item characteristics, also known as demands q_{jk}

$$\beta_j = \sum_{k=1}^K q_{jk} \eta_k$$

• Then, a Rasch (1PL) model simply becomes:

$$P_{ij} = P\left(x_{ij} = 1 | \theta_i, \beta_j, q_{jk}, \eta_k\right) = \frac{\exp\left(\theta_i - \sum_k q_{jk} \eta_k\right)}{1 + \exp\left(\theta_i - \sum_k q_{jk} \eta_k\right)}$$

Fischer, G. H. (2005). "Linear logistic test models," In Encyclopedia of Social Measurement, 2, 505-514.

• The q_{jk} are specified by experts, the parameters η_k are estimated.

PART III: AI EVALUATION AS PREDICTING VALIDITY

"you can never really **predict** for any given question whether a large language model will give you a correct answer"

Gary Marcus, Al Digest, 14 August 2023.

What Can We Predict?

Pointers:

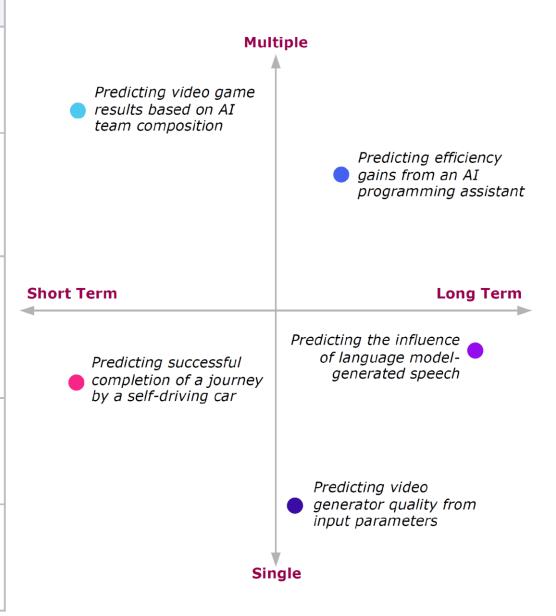
- Zhou, L., Moreno-Casares, P. A., Martínez-Plumed, F., Burden, J., Burnell, R., Cheke, L., ... & Hernández-Orallo, J. (2025). Predictable Artificial Intelligence. arXiv preprint arXiv:2310.06167. https://arxiv.org/pdf/2310.06167
- Pacchiardi, L., Voudouris, K., Slater, B., Martínez-Plumed, F., Hernández-Orallo, J., Zhou, L., & Schellaert, W. (2025). PredictaBoard: Benchmarking LLM score predictability. arXiv preprint arXiv:2502.14445.

WHAT IS PREDICTABLE AI?

- Al Predictability is the extent to which key behavioural indicators of present and future Al ecosystems can be anticipated.
 - These indicators are measurable properties such as performance and safety.
- Al Predictability may refer to
 - anticipation in a specific context of use, such as a user query to a single Al system.
 - anticipation of future capabilities and safety issues several years ahead.

Al should aim for predictability, not performance or even fool-proof validity.

Example	Inputs	Outputs
Self-driving car trip: A self-driving car is about to start a trip to the mountains. The weather is rainy and foggy. The navigator is instructed to use an eco route and adapt to traffic conditions but being free to choose routes and driving style. Before starting, the passengers want an estimate that the car will reach the destination safely.	The route, weather, traffic, time, trip settings, car's state,	Probability of safely reaching the destination.
Marketing speech generation: A request is made to a language model to generate a marketing speech based on an outline. The stakeholders expect the literal content of the speech to be original, or even surprising. What they really want to be predictable is whether the system will generate a speech along the outline, containing no offensive or biased content, and effectively persuading the audience to purchase the product.	Speech outline, audience demographics, potential restrictions,	Long-term impact of the speech on product purchases.
Video generation model training: An AI system is developed to create short music videos for a social media platform. Drawing from evaluations of prior video generation models and with additional audio and video training data, the plan is to train an upgraded model within a few weeks. The question to predict is the quality of this upgraded AI system, given model size, training data, learning epochs, etc; and the extent to which the videos will conform to content moderation standards.	Quantity of videos, compute, epochs, architecture specifications,	Quality and compliance of generated videos, according to human feedback.
AI assistant in software firm: A software company plans to deploy a new AI assistant to help programmers write, optimise and document their code. The question is how much efficiency (e.g., work hours in coding, documentations and maintenance) the company can get in the following six months.	AI assistant details, user profiles,	Efficiency metric (work hours saved).
AI agents in an online video game: In a popular online e-sports competition, several AI agents are to be used to form teams. The game developers have previously tested several multi-agent reinforcement learning algorithms. The developers want to anticipate the outcome of the next game based on the chosen algorithms and team members.	Team line-up (own and other teams), match level,	Match result (score)



CENTRALITY

Smart Humans

(Possibly Smarter) General-Purpose AI System

......

BEHAVIOUR OR OUTCOME?

Predicting behaviour

- "Can we predict system behaviour in detail?"
 - Requires the same power as the original model
 - Fidelity-interpretability trade-off if we want to understand!

Predicting outcome (indicator)

- "Can we predict system failure in detail?"
 - May require less power than the original model
 - It's still useful if we don't understand!

We can't predict what the system will do but we can predict the outcome

WHAT CAN BE PREDICTED?

- Any validity indicator that can be reliably anticipated and
 - can determine when, how or whether the system is worth being used in a given context.
- Outputs:
 - correctness
 - safety
 - fairness
 - energy consumption
 - response time
 - •

into a prediction problem from inputs to output

- Inputs:
 - \(\system\), problem, context\(\rangle\)
 - system metafeatures:
 - size, compute, architecture, ...
 - problem metafeatures:
 - task demands/difficulties...
 - context metrafeatures:
 - user profile, constraints, ...

PREDICTING AI VALIDITY = AI EVALUATION

- We can build <u>predictive models</u> to anticipate how valid a system is going to be for a particular instance and context of use.
- Extracting patterns of performance (from given features or extracting these features)
- Granular anticipation for the same and changing distributions!

Al Evaluation becomes a validity prediction problem

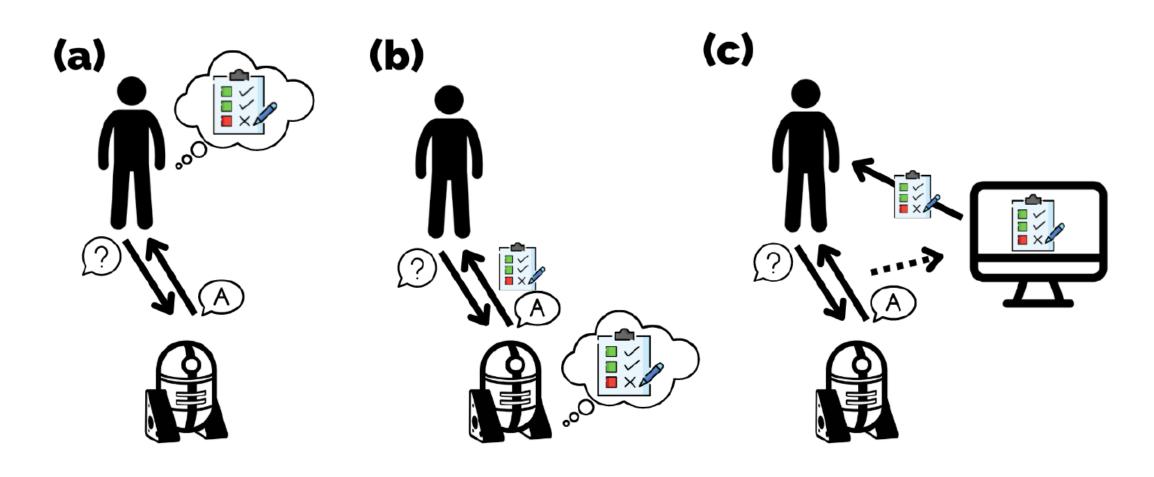
The Evaluation of Artificial Intelligence as a Prediction Problem

February 2025

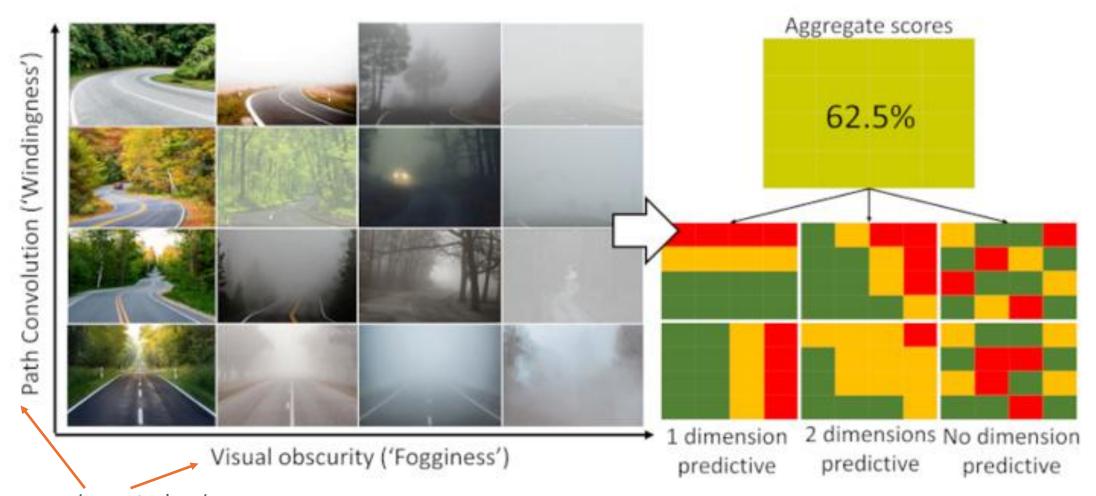
Author: Wout Schellaert

Advisors: José Hernández-Orallo Fernando Martínez-Plumed

WHO PREDICTS AND HOW?

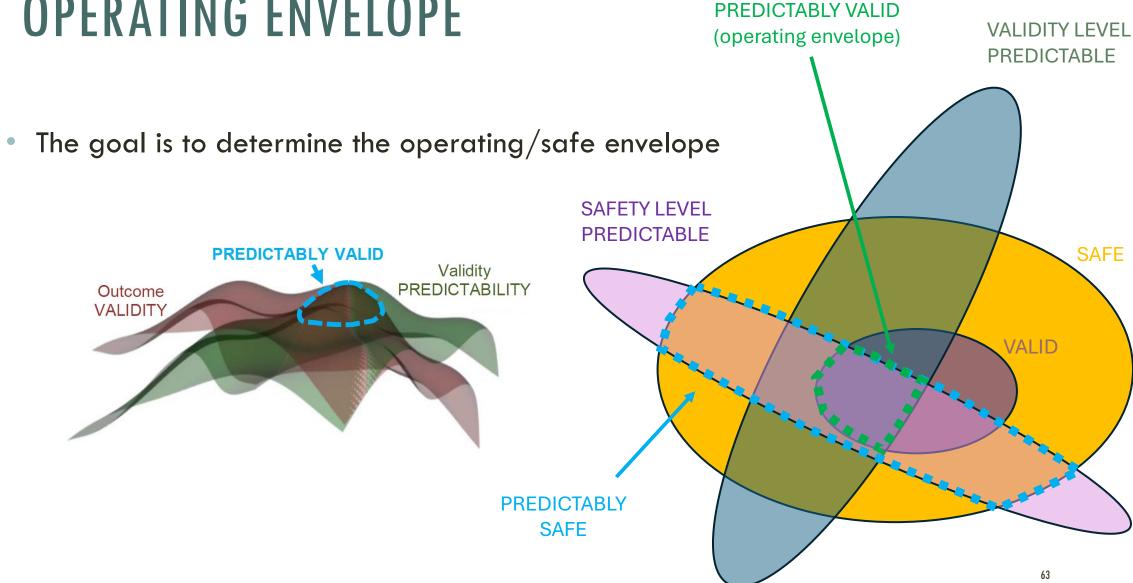


WHERE WILL IT FAIL?



WILL IT WORK SAFELY IN THIS CASE?

OPERATING ENVELOPE



DEFINITION

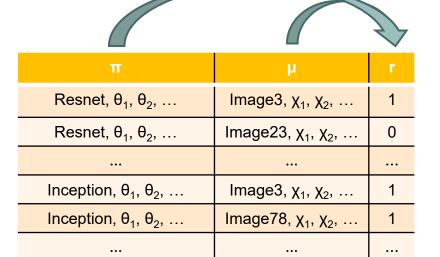
Conditional probability estimator of the result r for Al system π on situation μ :

$$\hat{R}(r|\pi,\mu) \approx \Pr(R(\pi,\mu)=r)$$

It is trained (and evaluated) on test data:

- Using a distribution of situations (instances) μ .
- Using a distribution of systems π .

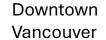
It is applied during deployment, before π does any inference or even starts.

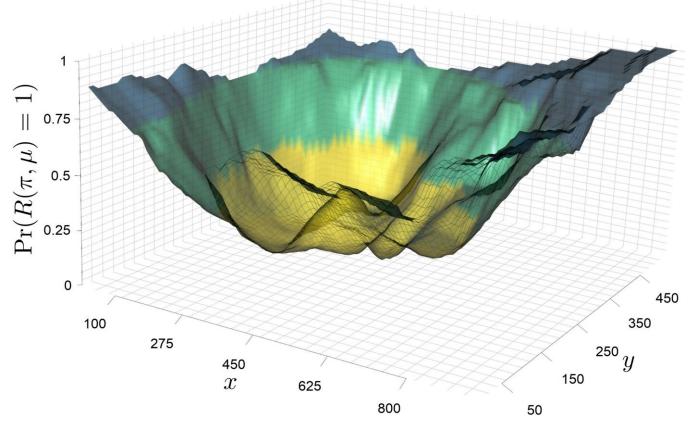


PROBLEM SPACE

We can describe situations or instances with features $\mu = \langle \chi_1, \chi_2, ... \rangle$.

- Delivery robot in a city with destination $\mu = \langle x, y \rangle$
- $\blacksquare \pi$ behaves very differently depending on the situation μ .
- Expected result for π differs for different joint distributions Pr(x,y)





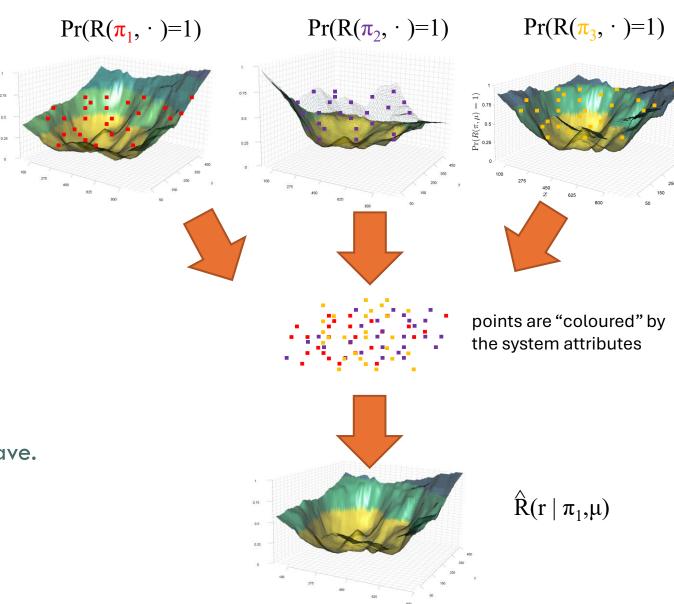
SYSTEM SPACE

We can describe systems with properties $\pi = \langle \theta_1, \theta_2, ... \rangle$.

Hyperparameters, system's operating conditions (e.g., computing resources), developmental states, ...

Key element for an assessor

- Much predictability about one π can be obtained by looking at how other π ' behave.
 - $\begin{tabular}{l} Oncertainty estimation or calibration of π without looking at other systems is shortsighted! \end{tabular}$



RANGE OF APPLICATIONS

Predicting instance performance

Predicting populational performance

Selecting and combining systems (GPT5's router)

Detecting anomalies and perturbations

Explaining failures or fixing them

AutoML and adaptive sampling

Inferring fairness metrics for different distributions

Maintenance and revision

Auditing and certification

Dr Robotham is 99% successful!

for your case, our assessor model predicts 28% success with Dr Robotham!

WHERE'S THE DOOR PLEASE?

EVALUATING EVALUATION: PREDICTABOARD

- Subjects: pairs of LLM and assessors
- At each instance: evaluate LLM score and the assessor's prediction
- PredictaBoard includes:
- Instance-level results of SotA LLMs (MMLU-Pro and BBH), split into traintest (for assessors)
- Baseline assessor architectures (based on text embeddings)

(Focus on LLMs, but the framework applies to any other system)

PredictaBoard: Benchmarking LLM Score Predictabilit

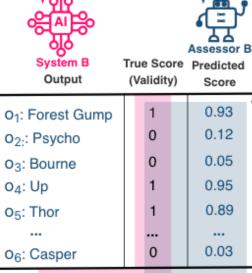
Lorenzo Pacchiardi¹, Konstantinos Voudouris^{1,2}, Ben Slater¹, Fernando Martín José Hernández-Orallo^{1,3}, Lexin Zhou^{1,3}, Wout Schellaert³

¹Leverhulme Centre for the Future of Intelligence, University of Cambridge, Unite ²Institute for Human-Centered AI, Helmholtz Zentrum Munich, German ³VRAIN, Universitat Politècnica de València, Spain

Task Instances

i2. 🕶 🗲 🗡

Error (Assessor A): 0.132

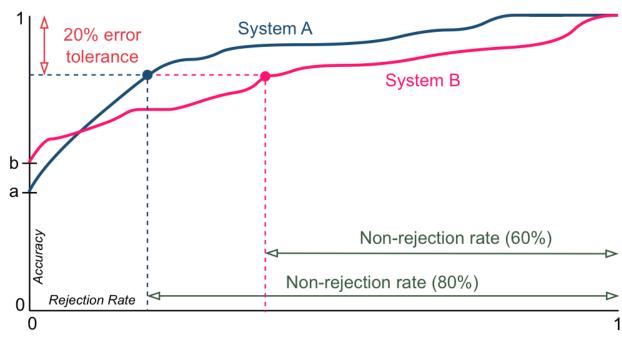


Acc (System B): 0.5

Error (Assessor B): 0.029

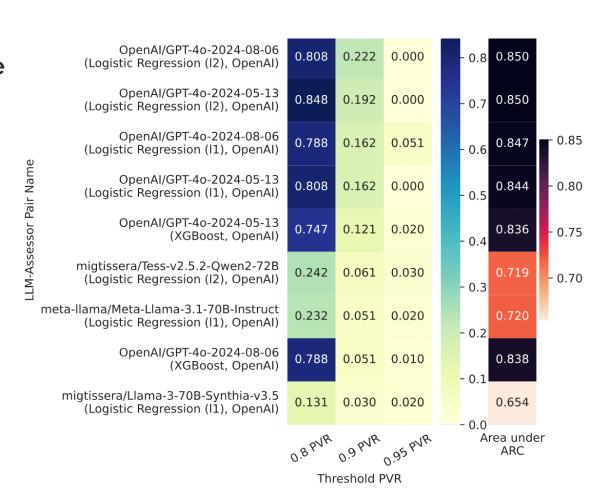
HOW DO WE SCORE PREDICTABILITY?

- If ew evaluate assessor only:
 - We can use metrics for probabilistic classifiers, such as Brier score (=mean squared error) and AUROC
- If we evaluate pairs (systems, assessors):
- Validity must be considered too
- Approach: Accuracy-Rejection Curve (ARC)
 (Nadeem et al, 2010)
- From it, fix an error tolerance (e.g., 20%)
 and obtain the non-rejection rate, or the
 Predictably Valid Region: PVR (0.8)
- You can also compute Area under ARC



CURRENT MODELS ARE POORLY PREDICTABLE!

- PVR is low, particularly for low error tolerance
 - This is the area relevant for high-stakes scenarios!
- Even worse out-of-distribution (not shown)
- Researchers can help by:
 - Building more predictable LLMs
- Developing better assessors
- Gap in making models performing well on predictable operating conditions



Features and Approaches

Pointers:

- Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2019). Item response theory in Al: Analysing machine learning classifiers at the instance level. Artificial intelligence, 271, 18-42.
- Lalor, J. P., Rodriguez, P., Sedoc, J., & Hernandez-Orallo, J. (2024). Item response theory for natural language processing. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics.
- Burden, J., Voudouris, K., Burnell, R., Rutar, D., Cheke, L., & Hernández-Orallo, J. (2023).
 Inferring capabilities from task performance with Bayesian triangulation. arXiv preprint arXiv:2309.11975.

INSTANCE FEATURES

Instance-level data:

• For building good predictive models of Al validity, we need <u>evaluation results at the</u> instance level.

Is sharing code open source (github) enough?
Re-running the experiments is not feasible/sustainable anymore.

ARTIFICIAL INTELLIGENCE

Rethink reporting of evaluation results in Al

Aggregate metrics and lack of access to results limit understanding

By Ryan Burnell¹, Wout Schellaert², John Burden^{1,3}, Tomer D. Ullman⁴, Fernando Martinez-Plumed², Joshua B. Tenenbaum⁵, Danaja Rutar⁴, Lucy G. Cheke^{1,6}, Jascha Sohl-Dickstein⁷, Melanie Mitchell⁸, Douwe Kiela⁹, Murray Shanahan^{10,11}, Ellen M. Voorhees¹², Anthony G. Cohn^{13,14,15,16}, Joel Z. Leibo¹⁰, Jose Hernandez-Orallo^{1,2,3}

rtificial intelligence (AI) systems have begun to be deployed in high-stakes contexts, including autonomous driving and medical diagnosis. In contexts such as these, the consequences of system failures can be devastating. It is therefore vital that researchers and policymakers have a full understanding of the capabilities and weaknesses of AI systems so that they can make informed decisions about where these systems are safe to use and how they might be improved. Unfortunately, current approaches to AI evaluation make it exceedingly difficult to build such an understanding, for two key reasons. First, aggregate metrics make it hard to predict how a system will perform in a particular situation. Second, the instance-by-instance evaluation results that could be used to unpack these aggregate metrics are rarely made available (1). Here, we propose a path forward in which results are presented in more nuanced ways and instance-by-instance evaluation results are made publicly available.

Across most areas of AI, system evaluations follow a similar structure. A system is first built or trained to perform a particular set of functions. Then, the performance of the system is tested on a set of tasks relevant to the desired functionality of the system. In many areas of AI, evaluations use standardized sets of tasks known as "benchmarks." For each task, the system will be tested on a number of example "instances" of the task. The system would then be given a score for each instance based on its performance, e.g., 1 if ticlassified an image correctly, or 0 if it

was incorrect. For other systems, the score for each instance might be based on how quickly the system completed its task, the quality of its outputs, or the total reward it obtained. Finally, performance across the various instances and tasks is usually aggregated to a small number of metrics that summarize how well the system performed, such as percentage accuracy.

But aggregate metrics limit our insight into performance in particular situations, making it harder to find system failure points and robustly evaluate system safety. This problem is also worsening as the increasingly broad capabilities of state-of-the-art systems necessitate ever more diverse benchmarks to cover the range of their capabilities. This problem is further exacerbated by a lack of access to the instance-by-instance results underlying the aggregate metrics, making it difficult for researchers and policy-makers to further scrutinize system behavior.

AGGREGATE METRICS

Use of aggregate metrics is understandable. They provide information about system performance "at a glance" and allow for simple comparisons across systems. But aggregate performance metrics obfuscate key information about where systems tend to succeed or fail (2). Take, for example, a system that was trained to classify faces as male or female that achieved classification accuracy of 90% (3). Based on this metric, the system appears highly competent. However, a subsequent breakdown of performance revealed that the system misclassified females with darker skin types a staggering 34.5% of the time, while erring only 0.8% of the time for males with lighter skin types. This example demonstrates how aggregation can make it difficult for policymakers to determine the fairness and safety of AI systems.

Compounding this problem, many benchmarks include disparate tasks that are ultimately aggregated together. For

example, the Beyond the Imitation Game Benchmark (BIG-bench) for language models includes over 200 tasks that evaluate everything from language understanding to causal reasoning (4). Aggregating across these disparate tasks—as the BIG-bench leaderboard does—reduces the rich information in the benchmark to an overall score that is hard to interpret.

It is also easy for aggregation to introduce unwarranted assumptions into the evaluation process. For example, a simple average across tasks implicitly treats every task as equally important—in the case of BIGbench, a sports understanding task has as much bearing on the overall score as a causal reasoning task. These aggregation decisions have huge implications for the conclusions that are drawn about system capabilities, yet are seldom considered carefully or explained.

Aggregate metrics depend not only on the capability of the system but also on the characteristics of the instances used for evaluation. If the gender classification system above were reevaluated by using entirely light-skinned faces, accuracy would skyrocket, even though the system's ability to classify faces has not changed. Aggregate metrics can easily give false impressions about capabilities when a benchmark is not well constructed.

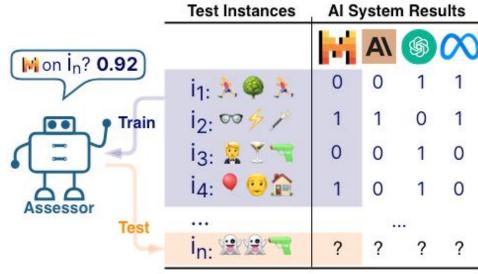
Problems and trade-offs that arise when considering aggregate versus granular data and metrics are not specific to AI, but they are exacerbated by the challenges inherent in AI research and the research practices of the field. For example, machine learning evaluations usually involve randomly splitting data into training, validation, and test sets. An enormous amount of data is required to train state-of-the-art systems, so these datasets are often poorly curated and lack the detailed annotation necessary to conduct granular analyses. In addition, the research culture in AI is centered around outdoing the current state-of-the-art performance, as evidenced by the many lea-

Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK. "Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de Valencia, Spain." Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK. "Department of Psychology, Harvard University, Cambridge, MA. USA. "Department of Psychology, University of Cambridge, Cambridge, MA. USA. "Department of Psychology, University of Cambridge, Cambridge, WK. "Brain team, Google, Mountainview, CA. USA. "Santa Fe Institute, Santa Fe, NM, USA. "Stanford University, Stanford, CA, USA. "Department of Psychology, University of Cambridge, Cambridge, UK." Brain team, Google, Mountainview, CA, USA. "Santa Fe Institute, Santa Fe, NM, USA. "Stanford University, Stanford, CA, USA." Department of Computing, Imperial College London, UK." National Institute of Standards and Technology (Retired), Gaithersburg, MD, USA. "School of Computing, University of Leeds, Leeds, UK. "Alan Turing Institute, London, UK." Digit University, Shanghai, China. "Shandong University, Jinan, China. Email: rb96"@cam.ac.uk

136 14 APRIL 2023 • VOL 380 ISSUE 6641 science.org SCIENCE

ASSESSORS: PREDICTING AT THE INSTANCE-LEVEL

- Assessors to predict the score for each task instance: modules trained to predict model score from features of the input and (potentially) model activation
- Binary score: predict probability of success
- Assessors must not use model output to ensure:
- They do not (hiddenly) rely on knowledge of ground truth, ensuring they work in unknown domains
- They are protected from model manipulation

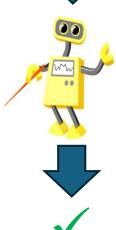


WITH FEATURE CONSTRUCTION

User

What's the sum of the numbers 250006716 and 515065198?

Bag of words (0,0,2,0,0,1,)



(0.11,0.3,0.8,0.11,0.3,....) Embeddings

The sum is 765610454

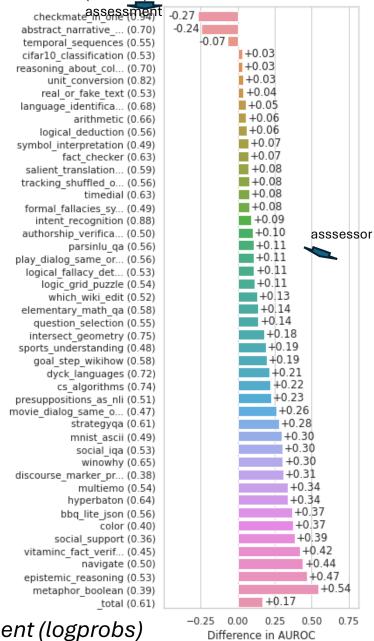
LMs PREDICT LMs

FINETUNING. Setup:

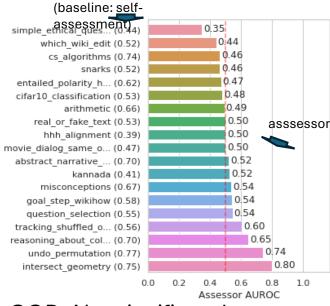
- Problem space (items):
 - BIG-bench evaluation suite (millions of instances)
- System space (subjects):
 - Validity (correct/incorrect) for 12 LMs (200M to 128B parameters)
- Assessor:
 - Small-ish assessor (60M DeBERTa)

In distribution:

- Total AUROC of 0.61
- Improvement over self-assessment (logprobs)



(baseline): self-



OOD: Not significantly better than self-assessment (logprobs)



Bigger assessor = better Bigger subject = neutral

PREDICTIONS FROM FEATURES

- Selected subset of AAIO instances measuring simple goal-directed behaviour
- Data across 99 instances from 68 agents

M Crosby, B Beyret, M Shanahan, J Hernández-Orallo, L Cheke, M Halina "The animal-Al testbed and competition" NeurIPS 2019 Competition and Demonstration Track, Proceedings of Machine Learning Research, 2020

http://lcfi.ac.uk/projects/kinds-of-intelligence/animalaiolympics/

IDENTIFYING FEATURES OF INTEREST

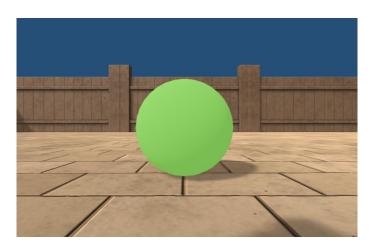
Relevant

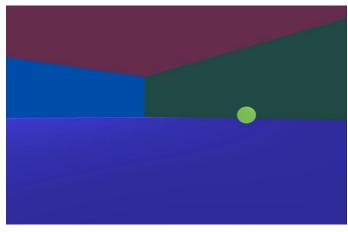
- Reward size
- Reward distance
- Reward in view (i.e., in front vs behind)

Irrelevant

- Reward side (left vs right)
- Reward colour (green vs yellow)

Burnell, R., Burden, J., Rutar, D., Voudouris, K., Cheke, L., & Hernández-Orallo, J. (2022). Not a Number: Identifying Instance Features for Capability-Oriented Evaluation. International Joint Conferences on Artificial Intelligence Organization.





DIMENSIONS AND AGENT CHARACTERISTIC CURVES

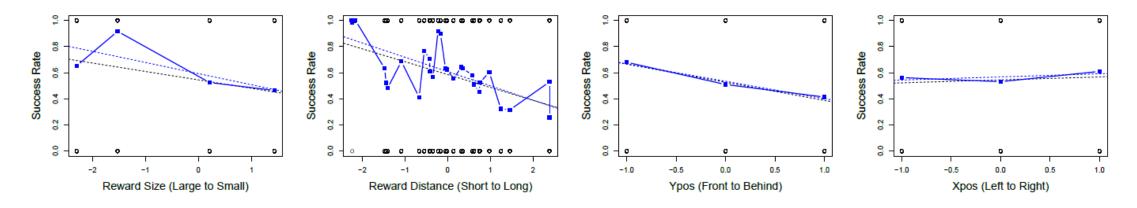
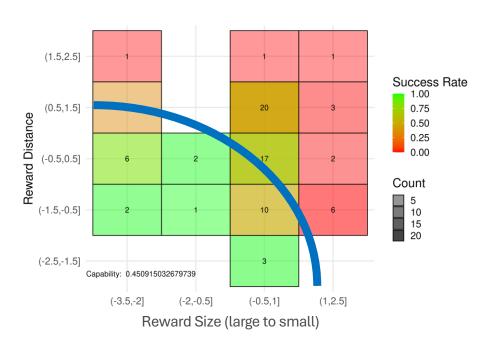


Figure 5: Characteristic curves of all competition entrants (agents) according to three relevant features (size, distance and Ypos) and one irrelevant feature (Xpos). Black dashed lines show the linear regression for the black points (pass/fail), while blue dashed lines interpolate the blue points (binned success rate). The conformances (Spearman correlations against monotonic sequence) are 0.80, 0.60, 1.00 and -0.50, respectively.

CAPABILITIES VS NO-CAPABILITIES

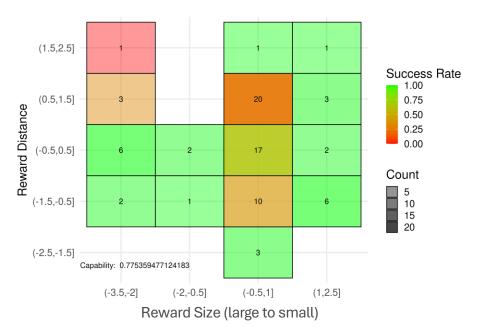
Capability boundary



Conformant System
Juohmaru

This system doesn't show monotonicity.

We can't identify any level of capability robustly.



Non-Conformant System y.yang

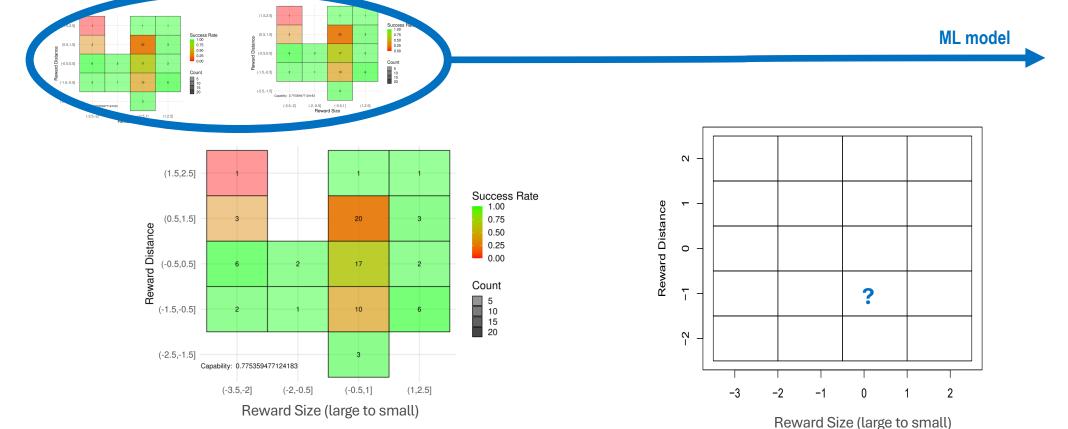
PREDICTING PERFORMANCE POSSIBLE

Except the last one, these are basically non-inferential

methods (constant models or binning extrapolations)

8

PREDICTING PERFORMANCE NOT POSSIBLE?



A: use assessor models (Using all variables or only the relevant ones?)

assessors = let's use all the power of ML to characterise the system's performance!!

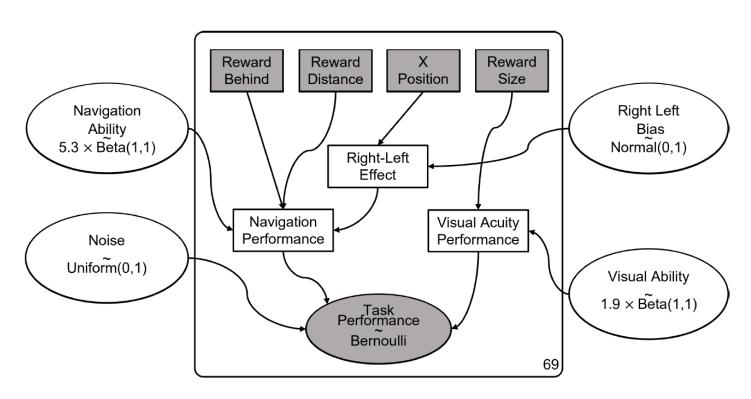
PREDICTING PERFORMANCE (COMPARISON)

Assessor with all features

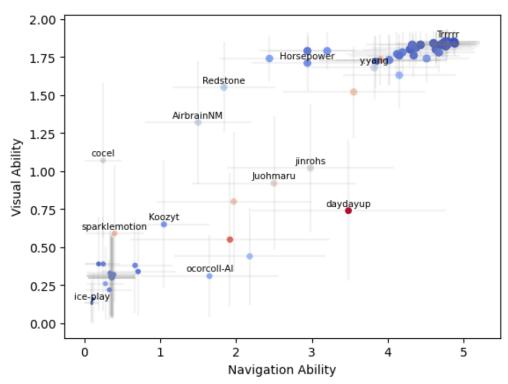
	Maj. (1)	G.Acc.	T.Acc.	~All+A	~Rel+A
Error MAE MSE	45.3% 45.3% 45.3%	48.0% 49.6% 24.8%	33.6% 34.9% 17.6%	19.7% 29.3% 14.8%	20.6% 30.2% 15.4%
					

Animal AI Competition Data: 99 instances x 68 agents

MEASUREMENT LAYOUTS

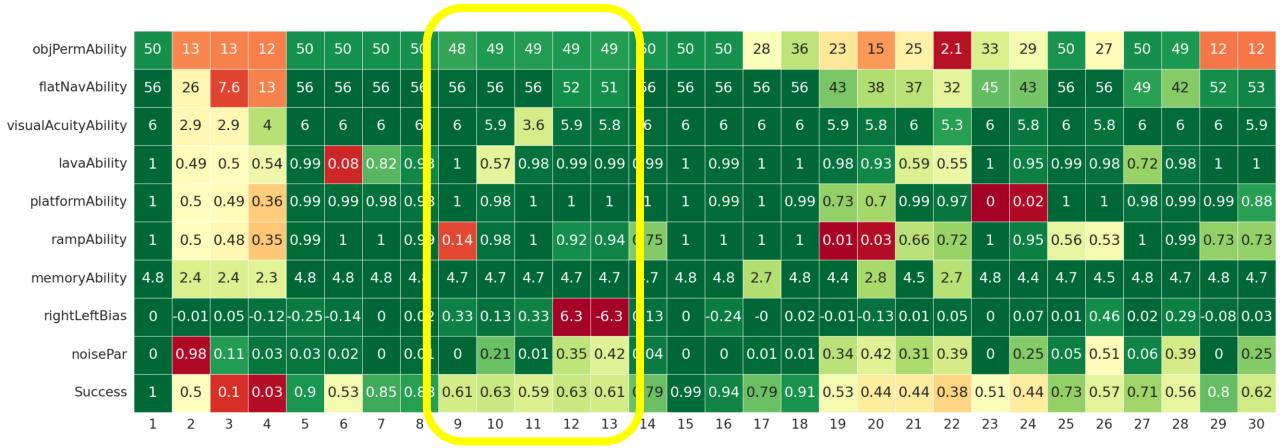


J. Burden et al. "Inferring Capabilities from Task Performance with Bayesian Triangulation", arXiv preprint arXiv:2309.11975, 2023



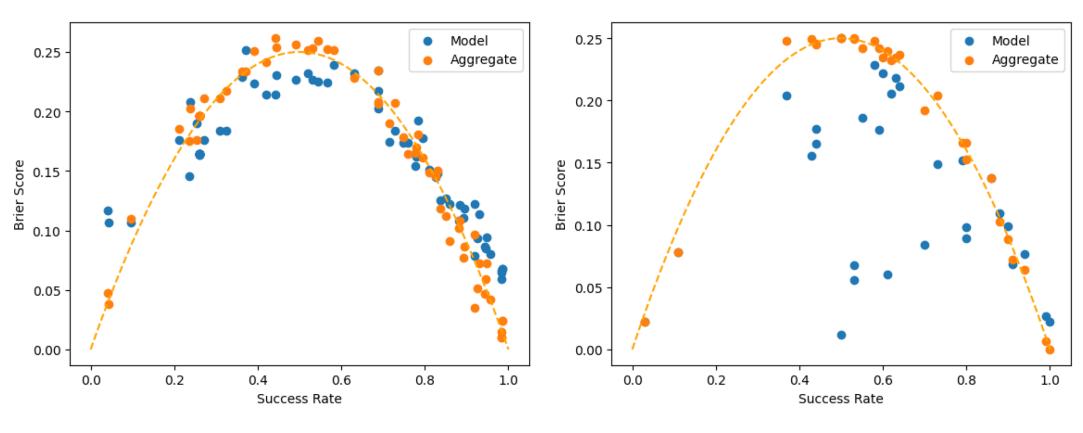
The x-axis and y-axis show the inferred means for navigationAbility and visualAbility respectively, with their standard deviations as error bars in grey. The radius of each point represents the average performance, while the colour represents the noiseLevel (red higher than blue).

MEASUREMENT LAYOUTS: MORE COMPLEX (O-PIAAGETS)



Very similar performance, very different cognitive profiles

MEASUREMENT LAYOUTS: PREDICTABILITY

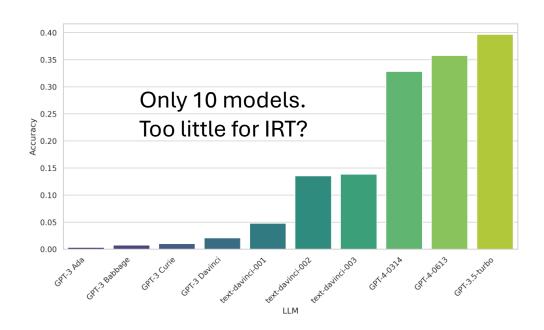


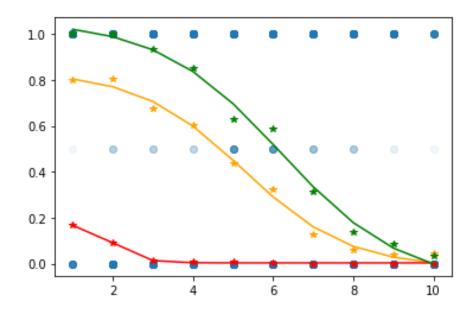
(a) AAIO Tasks

(b) O-PIAAGETS tasks.

MORE SOPHISTICATED MODELS

From performance to capabilities more generally:





GPT (3, 3.5, 4) on addition problems with difficulty being the mean of #digits (x-axis is deciles)

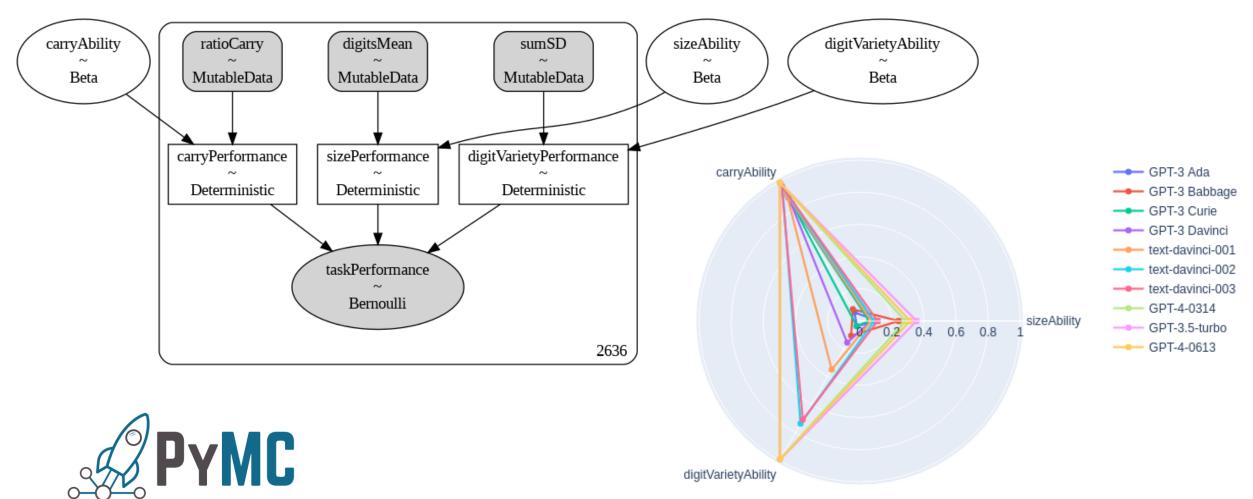
MORE SOPHISTICATED DEMANDS

- digits1: The number of digits in the first summand.
- digits2: The number of digits in the second summand.
- min_digits: $min(digits_1, digits_2)$, i.e., the number of digits in the smaller summand.
- harm_mean: $2/(1/digits_1 + 1/digits_2)$, i.e., the harmonic mean of the number of digits in the two summands.
- $art_mean: (digits_1 + digits_2)/2$, i.e., the arithmetic mean of the number of digits in the two summands.
- $\max_{\text{digits}} : \max_{\text{digits}_1}, \operatorname{digits}_2)$, i.e., the number of digits in the larger summand.
- carry: The number of carrying operations required to add the two numbers.

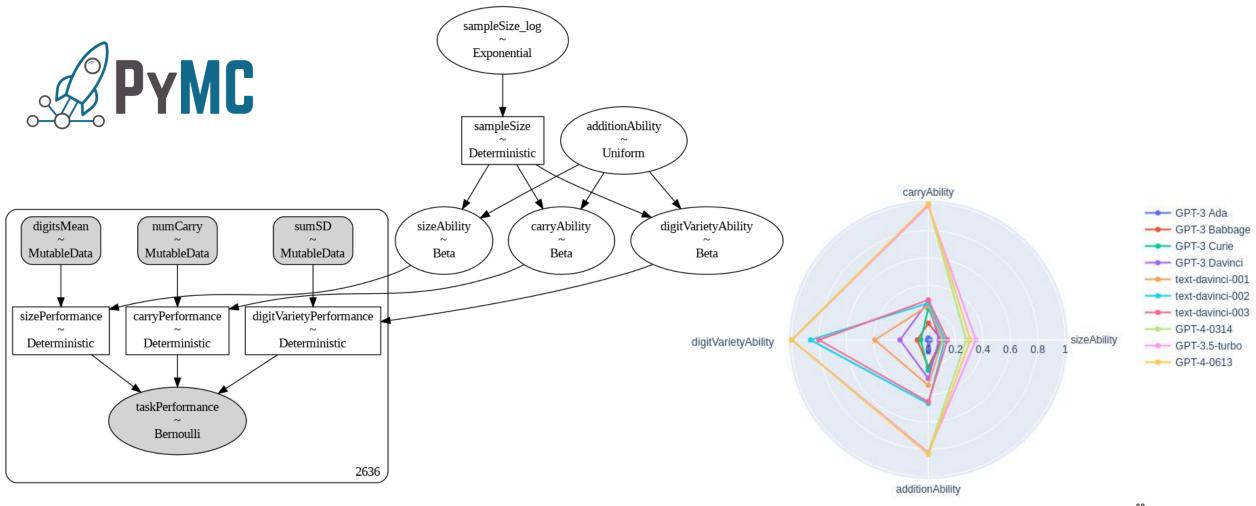
What are some of the things that make the addition of two numbers 'difficult'?

- Size of the two numbers
- Number of carrying operations
- Can we have lots of carrying operations but the additions is still 'easy'?

SIMPLE MEASUREMENT LAYOUT

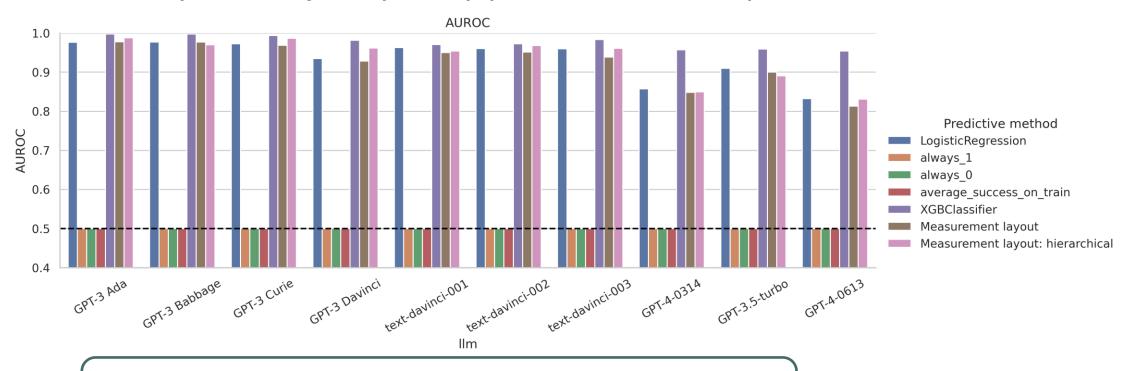


HIERARCHICAL MEASUREMENT LAYOUT



PREDICTING PERFORMANCE

Not only can we get capability profiles, but we can predict well!



The measurement layouts are non-populational. They do not depend on the results of the other models!

OTHER METHODS TO EXPLAIN/PREDICT PERFORMANCE

From Games and Al:

Elo-Ranking, TrueSkill (Microsoft)

From Al:

Scaling laws

From Psychometrics:

- IRT, especially LLTM
- SEM / Hierarchical models
- Multi-level IRT.
- Factor analysis (next slide)

• . . .

Minka, T., Cleven, R., & Zaykov, Y. (2018). Trueskill 2: An improved bayesian skill rating system. *Technical Report*.

Schellaert et al. (2024): Scaling the scaling laws. Workshop on scaling laws, EACL.

Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2019). Item response theory in Al: Analysing machine learning classifiers at the instance level. Artificial intelligence, 271, 18-42.

Lalor, J. P., Rodriguez, P., Sedoc, J., & Hernandez-Orallo, J. (2024). Item response theory for natural language processing. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics.

Ravand, H. (2015). Item response theory using hierarchical generalized linear models. *Practical Assessment, Research, and Evaluation*, 20(1), 7.

Sulis, I., & Toland, M. D. (2017). Introduction to Multilevel Item Response Theory Analysis: Descriptive and Explanatory Models. The Journal of Early Adolescence, 37(1), 85-128. https://doi.org/10.1177/0272431616642328

FACTOR ANALYSIS

			Factor	r loadings	(Freq.)	Factor loadings (Bayesian)				
Task	HELM dassification	Annotated ability	Factor 1	Factor 2	Factor 3	Factor 1	Factor 2	Factor 3		
XSUM	Summarization	Comprehension	0.91	0.05	-0.09		0.84			
HellaSwag	QA	Comprehension	0.88	0.21	-0.04		0.93			
NarrativeQA	QA	Comprehension	0.86	0.25	-0.05		0.68			
CNN.DailyMail	Summarization	Comprehension	0.85	-0.40	0.03		0.47			
IMDB	Sentiment Analysis	Comprehension	0.84	-0.02	-0.33		0.33			
WikiFact	Knowledge	Domain knowledge	0.82	-0.08	0.26		0.78			
OpenbookQA	QA	Reasoning - commonsense	0.80	0.19	0.10		0.93			
NaturalQuestions	QA	Comprehension	0.76	0.11	0.22		0.97			
BoolQ	QA	Comprehension	0.72	0.21	0.19		0.70			
RAFT	Text Classification	Comprehension	0.63	0.13	0.33		0.69			
QuAC	QA	Comprehension	0.60	0.18	0.39		0.74			
TwitterAAE	Language modelling	Language modelling	-0.09	1.00	0.01			0.94		
ICE	Language modelling	Language modelling	0.17	0.90	-0.02			0.97		
The Pile	Language modelling	Language modelling	0.15	0.88	0.07			0.96		
BLiMP	Language modelling	Language modelling	0.03	0.80	-0.09			0.82		
TruthfulQA	QA	Domain knowledge	-0.15	-0.06	1.03	1.00				
BBQ	Bias	Reasoning - inductive	-0.02	-0.06	1.01	1.06				
GSM8K	Reasoning	Reasoning - mathematical	0.04	0.02	0.96	0.87				
Synthetic reasoning (NL)	Reasoning	Reasoning - fluid	-0.08	0.02	0.88	0.80				
MATH	Reasoning	Reasoning - mathematical	0.12	0.09	0.86	0.84				
CivilComments	Toxicity Classification	Comprehension	0.11	0.05	0.83	0.67				
Synthetic reasoning (A)	Reasoning	Reasoning - fluid	0.14	0.26	0.74	0.83				
MMLU	QA	Mixed	0.45	-0.13	0.64	0.95				
LegalSupport	Reasoning	Reasoning - inductive	0.47	-0.16	0.48	0.32				
LSAT	Reasoning	Reasoning - fluid	0.02	-0.09	0.46					
bAbI	Reasoning	Reasoning - deductive	0.44	0.35	0.40		0.69			
Dyck	Reasoning	Reasoning - deductive	0.25	0.45	0.28		0.59			

SUMMARY OF APPROACHES

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models		
Performance Aggregation / CTT	No	No	No	No	_	Statistical Tendency/Position/Dispersion		
Scaling Laws	No	Seen & New	No	Yes		Power Laws		
Factor Analysis	No	No	No	Yes ≥1		Linear (response)		
SEM	No	Seen	Yes	Yes	≥1 or hierarchy	Mostly Linear (response)		
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)		
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),		
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)		
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1MIRT)	Linear (diff) + Logistic (response)		
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic		
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic		
Self-assessment (uncert. est.)	Seen & New	Seen	No	No		The own model (mostly classification)		
Assessors	Seen & New	Seen & New	No	Either		Any Machine Learning Model		
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	≥1or hierarchy	Any Bayesian Model if Differentiable		

PART IV: KINDS OF DIFFICULTY

"It is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility"

Hans Moravec, Mind Children, Harvard University Press, 1988.

Intrinsic Difficulty

Pointers:

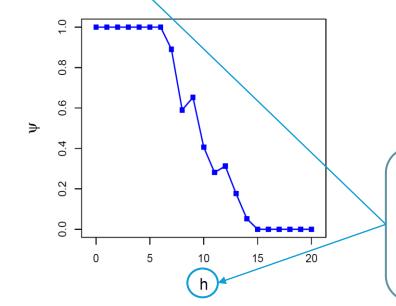
- Hernández-Orallo, J., Loe, B. S., Cheke, L., Martínez-Plumed, F., & Ó hÉigeartaigh, S. (2021). General intelligence disentangled via a generality metric for natural and artificial intelligence. Scientific reports, 11(1), 22822.
- Zhou, L., Schellaert, W., Martínez-Plumed, F., Moros-Daval, Y., Ferri, C., & Hernández-Orallo, J. (2024). Larger and more instructable language models become less reliable. Nature, 634(8032), 61-68.
- Sun, Y., Hu, S., Zhou, G., Zheng, K., Hajishirzi, H., Dziri, N., & Song, D. (2025).
 OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory,
 Compositional, and Transformative Generalization. arXiv preprint arXiv:2506.18880.

DIFFICULTY AS SOLUTION COMPLEXITY

Policy complexity (solution complexity, resources, ...)

"C-test" considers all computable policies.

- Defines $(h) = Kt(\mu)$, the Levin's Kt complexity of the solution
- Instead of aggregating a weighted sum using $p(\mu) \approx 2^{-KtU(\mu)}$
- We show an "agent" characteristic curve (ACC)!



```
h = 7 : a, b, c, d, ...
                                    Answer: e
h=8 : a,a,a,b,b,b,c,...
                                    Answer: c
h=9 : a,d,g,j,...
                                    Answer: m
h = 10 : a, c, b, d, c, e, ...
                                    Answer: d
h = 11 : a, a, b, b, z, a, b, b, ...
                                    Answer: y
h=12 : a,a,z,c,y,e,x,...
                                    Answer: q
                                    Answer: h
h = 13 : a, z, b, d, c, e, g, f, ...
h = 14
                                    Answer: d
           c, a, b, d, b, c, c, e, c, d, ...
```

Hernandez-Orallo, J. (2000). Beyond the Turing test. *Journal of Logic, Language and Information*, 9(4), 447-466.

The metric of difficulty of the solution policy becomes the common currency to show performance across different tasks

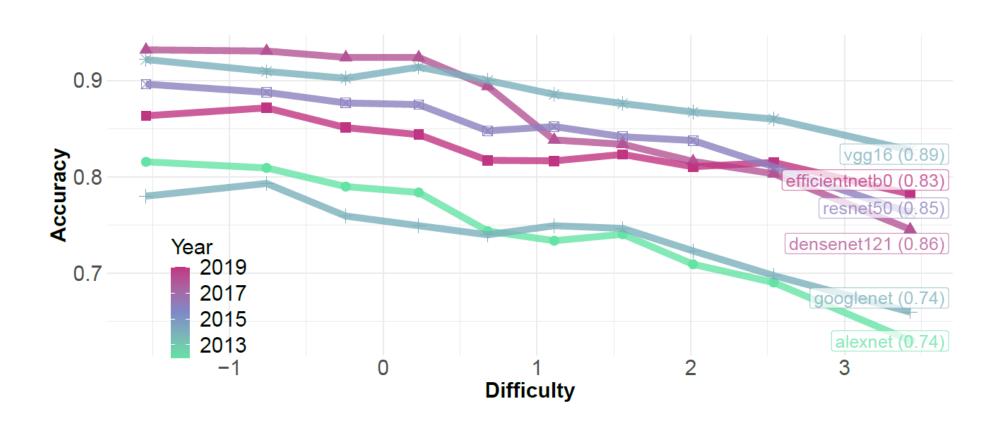
Hernández-Orallo, J. "Unbridled mental power" Nature Physics 15 (1), 2019

DIFFICULTY FROM OBSERVABLE FEATURES



Burnell, R., Burden, J., Rutar, D., Voudouris, K., Cheke, L., & Hernández-Orallo, J. (2022). Not a Number: Identifying Instance Features for Capability-Oriented Evaluation. International Joint Conferences on Artificial Intelligence Organization.

DIFFICULTY FROM IRT OR DIFFICULTY ESTIMATORS



DIFFICULTY PROXIES TO DELLA TO DELLA TRANSPORTE DELLA TRA

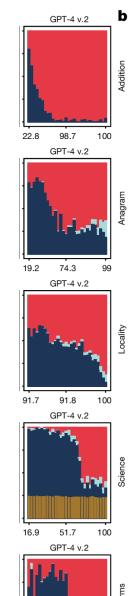
Article Open access | Published: 25 September 2024

Larger and more instructable language models become less reliable

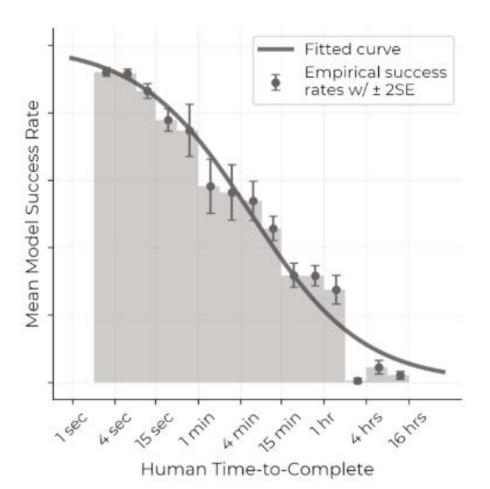
Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-Daval, Cèsar Ferri & José Hernández-Orallo 🗹

Nature **634**, 61–68 (2024) Cite this article

Benchmark	Examples	Cal. Diff.					
addition — single-task benchmark	Make the addition of 24427 and 7120.						
Arithmetic operations ranging from one to one-hundred-digit additions.	The sum of 47309068053 and 95464 is	65.04					
Difficulty: #carrying operations (f_{cry})	1893603010323501638430 + 98832380858765261900 =	98.67					
anagram — single-task benchmark	Unscramble this string of letters, "efe", to form a word.	18.42					
Jumbled words to be unscrambled to form a meaningful word ranging from	Rearrange the letters "ngiotuq" to make a single word.	50.42					
three to twenty-letter words. Difficulty: #letters of the anagram (f_{let})	Rearrange the following anagram into an English word: "elmtweoascnednkg".						
locality — single-task benchmark	Which city that is less than 27 km away from Toronto has the largest number of people?	91.66					
Geographical knowledge about the location and size of cities relative to	What is the name of the largest city (by population) that is less than 98 km away from Altea?						
each other. Difficulty: Inverse of city popularity (f_{pop})	Name the most populated city that is less than 39 km away from Akil.	99.87					
science — multi-task benchmark Elementary science-related world knowledge questions and graduate-level questions in biology, physics, and	Definition: In this task, you need to provide the correct option for a given problem from the provided options.\nProblem: Shining a light through a diamond can \nA) make a lot of bright lights shine\nB) summon a brilliant wave of color\nC) heat up a room\nD) make a lot of soney\nOutput:						
Themistry. Difficulty: Anticipated human difficulty (f_{hum})	A light beam is propagating through a glass with index of refraction n. The glass is moving at constant velocity v in the same direction as the beam and toward the observer in laboratory. What is the speed of light in glass relative to the observer in laboratory? Take the speed of light in vacuum c=1.\nA. (1+n*v)/(n+v)\n B. (1-n*v)/(n+v)\n C. 1 D. (1+n*v)/(n-v)\nWith respect to the choices above, the correct one is						
	Answer the following questions based on the list of available choices\nIdentify the missing reagents in the following reaction.\n(3r,5r,7r)-adamantane-1-carboxylic acid + A> (3r,5r,7r)-adamantane-1-carboxyl azide + B> (3s,5s,7s)-adamantan-1-amine.\nA: A = NaN3 and B = HCl aq, Heat\nB: A = PCl5 and B = H30+, Heat\nC: A = diphenylphosphoryl azide (DPPA) and B = H30+, Heat\nD: A = diphenylphosphoryl azide (DPPA) and B = NaN3\nAnswer:	99.97					
transforms — multi-task benchmark Information-centric transformation tasks.	Be concise in your answer, placed between double quotes. Do not generate any explanation or anything else apart from the requested output. Given\m'double07@MI6.gov.uk"\nModify the input to display the domain of the email address of the form USER@DOMAIN.	39.49					
Difficulty: Combination of input+output word count and Levenshtein distance (f _{w+l})	Consider the INPUT: \n"8:30h - Accreditation (badges)\n9:00h - Opening\n9:15h - Keynote\n10:15h - Coffee break\n10:45h - Invited Talks\n11:55h - Lightning talks\n12:05h - Panel\n13:00h - Lunch break (in the hall)\n14:30h - Keynote\n15:30h - Minibreak\n15:40h - Invited Talks\n16:50h - Panel\n17:45h - Closing remarks"\n17d like the agenda to show a 15-minute reduction in each keynote speaker's segment, shifting the schedule to finish earlier. \nBe concise in your answer, placed between double quotes. Do not generate any explanation or anything else apart from the requested output.						
	Michael Vaughn, a 63-year-old retired naval officer, presents an extensively complex medical history complicated by a litany of allergies. He battles chronic pain stemming from neuropathy for which he takes Pregabalin (Lyrica) 150 mg twice daily. Due to advanced rheumatoid arthritis, he relies on Etanercept (Enbrel) 50 mg, administered weekly via subcutaneous injection, but cannot be prescribed common NSAIDs like Ibuprofen on Naproxen due to gastrointestinal bleeding and a reported severe allergy to Aspirin (anaphylaxis). His Type 2 diabetes is managed with Insulin Aspart (NovoLog) administered via an insulin pump with doses varying according to his blood glucose readings; he experienced a life-threatening lactic acidosis episode with Metformin. N I'd like the list of drugs that are prescribed to the patient to be arranged alphabetically and without repetitions, in the form of a clean, comma-separated list. Be concise in your answer, placed between double quotes. Do not generate any explanation or anything else apart from the requested output.						



DIFFICULTY AS TIME



Measuring AI Ability to Complete Long Tasks

Thomas Kwa*, Ben West[†]*, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan Kinniment, Nate Rush, Sydney Von Arx

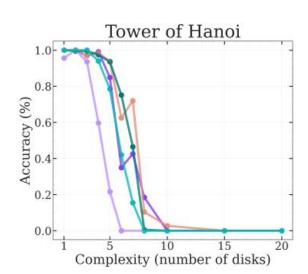
Ryan Bloom, Thomas Broadley, Haoxing Du, Brian Goodrich, Nikola Jurkovic, Luke Harold Miles[‡], Seraphina Nix, Tao Lin, Chris Painter, Neev Parikh, David Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler[§]

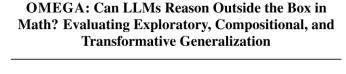
Elizabeth Barnes, Lawrence Chan

DIFFICULTY FROM COMPUTATIONAL COMPLEXITY

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

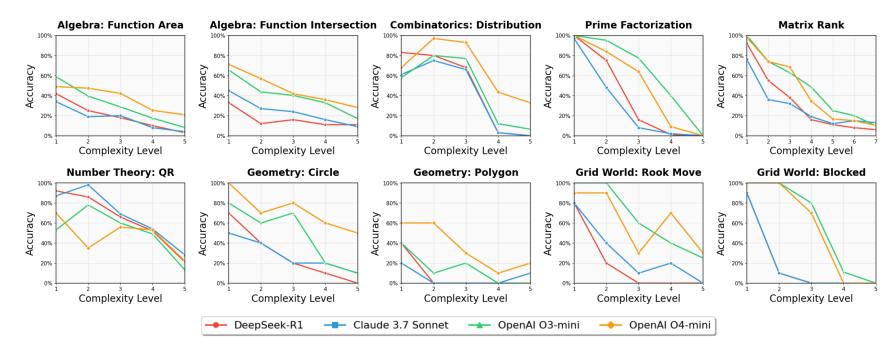
Parshin Shojaee* i Iman Mirzadeh* Keivan Alizadeh Maxwell Horton Samy Bengio Mehrdad Farajtabar





Yiyou Sun¹, Shawn Hu⁴, Georgia Zhou¹, Ken Zheng¹, Hannaneh Hajishirzi^{2,3}, Nouha Dziri²; Dawn Song¹*

¹University of California, Berkeley, ²Ai2, ³University of Washington, ⁴dmodel.ai



Annotated Demand Levels

Pointers:

Zhou, L., Pacchiardi, L., Martínez-Plumed, F., Collins, K. M., Moros-Daval, Y., Zhang, S., ... & Hernández-Orallo, J. (2025). General scales unlock ai evaluation with explanatory and predictive power. arXiv preprint arXiv:2503.06378. https://arxiv.org/abs/2503.06378

https://kinds-of-intelligence-cfi.github.io/ADELE/

GENERAL SCALES FOR A SCIENCE OF AI EVALUATION?

- In this paper we address some key elements for a science of Al evaluation:
 - Carve the space of capabilities (and propensities*) into commensurate scales.
 - Explain what benchmarks really measure.
 - Extract interpretable ability profiles of Al systems.
 - Predict performance (and safety*) for new task instances, in- and out-of-distribution.

^{*} Planned for ADeLe v.2.0

18 GENERAL DIMENSIONS

- A taxonomy of cognitive abilities for artificial and natural systems.
 - **DeLeAn v1.0**: only LLMs
 - **Primordial**: 11 cognitive capabilities
 - Knowledge: 5 branches of knowledge
 - Extraneous: 2 other elements making task difficult

	Dimension (Broad)		Dimension (Specific)	Description of Demands
AS	Attention and Scan	AS	Attention and Scan	Focus on or locate specific elements within a given stream of information or environment in the whole process of solving a task.
Comprehension		CEc	Verbal Comprehension	Understand text, stories or the semantic content of other representations of ideas in different formats or modalities.
CE	and Expression	CEe	Verbal Expression	Generate and articulate ideas, stories, or semantic content in different formats or modalities.
CL	Conceptualisation, Learning and Abstraction	CL	Conceptualisation, Learning and Abstraction	Build new concepts, engage in inductive and analogical reasoning, map relationships between domains, and generate abstractions from concrete examples.
		MCr	Identifying Relevant Information	Recognise what information helps solve the task or does not, and how this recognition process unfolds as they work toward the solution.
MC	Metacognition and Critical Thinking	MCt	Critical Thinking Processes	Monitor or regulate multiple thought processes to answer the question effectively, ranging from simple recall to high-level critical thinking.
		MCu	Calibrating Knowns and Unknowns	Recognise the boundaries of one's knowledge and confidently identify what one knows they know, knows they don't know, or is uncertain about.
MS	Mind Modelling and Social Cognition	MS	Mind Modelling and Social Cognition	Model the minds of other agents or reasoning about how the beliefs, desires, intentions, and emotions of multiple other agents might interact to determine future behaviours.
	Quantitative and	QL1	Logical Reasoning	Match and apply rules, procedures, algorithms or systematic steps to premises to solve problems, derive conclusions and make decisions.
QL	Logical Reasoning	QLq	Quantitative Reasoning	Work with and reason about quantities, numbers, and numerical relationships.
SN	Spatial Reasoning and Navigation	SNs	Spatio-physical Reasoning	Understand spatial relationships between objects and predicting physical interactions.
		KNa	Knowledge of Applied Sciences	Knowledge or conceptual understanding in applied sciences (e.g., medicine, law, education, business, agriculture, engineering except IT).
		KNc	Customary Everyday Knowledge	Knowledge in information that most people in a given society typically acquire through daily life experiences, social interactions, and media.
KN	Knowledge	KNf	Knowledge of Formal Sciences	Knowledge or conceptual understanding in formal sciences (e.g., mathematics, logic, computer science, statistics).
		KNn	Knowledge of Natural Sciences	Knowledge or conceptual understanding in natural sciences (e.g., physics, chemistry, biology, astronomy, earth sciences, ecology).
		KNs	Knowledge of Social Sciences	Knowledge or conceptual understanding in social sciences and humanities (e.g., history, psychology, sociology, literature, art, philosophy).
AT	Atypicality	AT	Atypicality	How uncommon the task is or how unlikely it is that the instance has appeared in various sources (internet, textbooks, tests).
VO	Volume	VO	Volume	Proportional to the logarithm of the time a fully competent human needs to read and complete the task in ideal conditions, excluding interruptions.

SCALES

- Ratio Scale
- Rule of thumb:
- Level 0: No demand
- Level 1: ≥1 in 10¹ people
- Level 2: ≥ 1 in 10^2 people
- Level 3: ≥ 1 in 10^3 people
- Level 4: ≥ 1 in 10^4 people
- Level $5: \ge 1$ in 10^5 people

Domain Knowledge (KN)

R1. Natural Sciences (KNn)

This rubric assesses the conceptual sophistication level of tasks based solely on the depth of knowledge or conceptual understanding required in the fields of natural sciences (e.g., physics, chemistry, biology, astronomy, earth sciences, ecology). This does not include social sciences and humanities (e.g., history, psychology, sociology, anthropology, literature, art, philosophy, linguistics) or formal sciences (e.g., mathematics, logic, computer science, statistics). It's important to note that this rubric focuses exclusively on the domain-specific knowledge needed, not considering other cognitive demands such as reasoning or metacognition. This reflects the conceptual depth and specificity of the knowledge in natural sciences required, rather than the mere presence of scientific content.

Levels

- **Level 0** None. Tasks do not require any knowledge of natural sciences. **Examples**:
 - "Write a python script to train a machine learning classifier for fake news detection."
 - "Analyze the symbolism in Shakespeare's Hamlet".
 - · "Calculate the cost of groceries."
- Level 1 Very low. Tasks that require knowledge in natural sciences typically acquired through elementary school education. Examples:
 - · Living things need food, water, and air to survive.
 - Basic parts of a plant (roots, stem, leaves).
 - Day and night cycle and seasons.
- Level 2 Low. Tasks that require knowledge in natural sciences typically acquired through middle school education. Examples:
 - The water cycle (evaporation, condensation, precipitation).
 - Basic cellular structure (nucleus, membrane, cytoplasm).
 - Simple food chains and ecosystems.
- Level 3 Intermediate. Tasks that require knowledge in natural sciences typically acquired through high school education. Examples:
 - Mendel's laws of inheritance and basic genetics.
 - The ideal gas law (PV = nRT).
 - Newton's three laws of motion.
- Level 4 High. Tasks that require knowledge in natural sciences typically acquired through undergraduate education. Examples:
 - Hardy-Weinberg equilibrium and population genetics.
 - Molecular orbital theory.
 - The process of cellular respiration and its relationship to photosynthesis.
- Level 5+ Very High. Tasks that require knowledge in natural sciences typically acquired through graduate education or beyond. Examples:
 - The theoretical frameworks of string theory and its implications.
 - . The six forms of quark flavors in particle physics.
 - The role of quantum entanglement in biological systems.

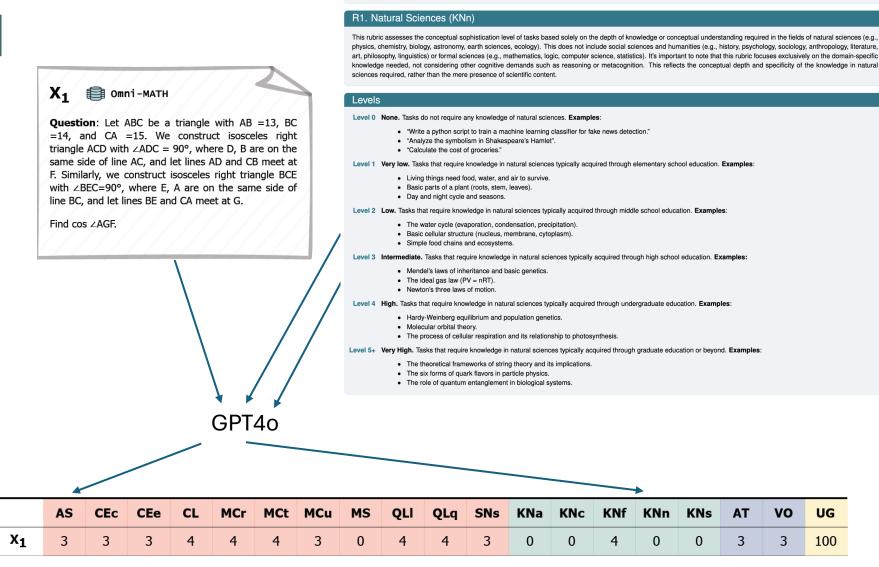
Example

Domain Knowledge (KN)

Rubric

ANNOTATION

- Automated through GPT4o annotation!
- Each instance is converted into an 18-dimensional numeric vector



ANNOTATION

Automated through GPT4o annotation! **Question**: Let ABC be a triangle with AB =13, BC =14, and CA =15. We construct isosceles right triangle ACD with \angle ADC = 90°, where D, B are on the same side of line AC, and let lines AD and CB meet at F. Similarly, we construct isosceles right triangle BCE with \angle BEC=90°, where E, A are on the same side of line BC, and let lines BE and CA meet at G.

Find cos ∠AGF.

X₂ TimeQA

Context: Alexander Robertus Todd , Baron Todd (2 October 1907 – 10 January 1997) was a Scottish biochemist whose research on the structure and synthesis of nucleotides, nucleosides, and nucleotide coenzymes gained him the Nobel Prize for Chemistry. Todd held posts with the Lister Institute, the University of Edinburgh (staff, 1934–1936) and the University of London, where he was appointed Reader in Biochemistry. In 1938, Alexander Todd spent six months as a visiting professor at California Institute of Technology, eventually declining an offer of faculty position. Todd became the Sir Samuel Hall Chair of Chemistry and Director of the Chemical Laboratories of the University of Manchester in 1938, where he began working on nucleosides, compounds that form the structural units of nucleic acids (DNA and RNA). In 1944, he was appointed to the 1702 Chair of Chemistry in the University of Cambridge, which he held until his retirement in 1971 [...].

Question: Which employer did Alexander R. Todd work for from 1938 to 1944?

X₃ MedCalcBench

Patient Note: A 58-year-old male presents to the clinic this week. No past stroke history can be detected in his medical records. He is currently being prescribed aspirin and NSAIDs, following an incident of significant bleeding he endured following a routine procedure. His alcohol intake can be considered heavy, consuming up to 12 drinks per week. Most recently, his blood pressure readings have tended to be elevated at above 170 mmHg for the systolic pressure. Interesting to note, his INR has remained stable during his multiple lab tests, eliminating any concerns about its lability. He also shows laboratory evidence of chronic kidney disease, necessitating further management. This man's condition mandates comprehensive dynamic monitoring and individualized care planning given the complexity of his medical situation.

Question: What is the patient's HAS-BLED score?

Question: The population of a certain city is 836,527. What is the population of this city rounded to the nearest ten thousand?

Choices:

- A. 860,000.
- B. 850,000.
- C. 830,000.
- **D**. 837,000.
- **E**. 820,000. **F**. 840,000.
- **G**. 835.000.
- H. 800.000.
- I. 836,500.
- J. 836,000

X₅ TruthQuest

Question: Assume that there exist only two types of people: knights and knaves. Knights always tell the truth, while knaves always lie. You are given the statements from 6 characters. Based on their statements, **infer who is a knight and who is a knave**. A: C is a truth-teller and F is a truth-teller. B: C is a truth-teller. D: F is a truth-teller. C: I am a truth-teller. D: F is a truth-teller. E: C is a truth-teller and B is a liar. F: B is a truth-teller.

Places examples of very different benchmarks on the same commensurate space!

	AS	CEc	CEe	CL	MCr	MCt	MCu	MS	QLI	QLq	SNs	KNa	KNc	KNf	KNn	KNs	AT	VO	UG
X ₁	3	3	3	4	4	4	3	0	4	4	3	0	0	4	0	0	3	3	100
X ₂	3	2	1	1	2	1	2	0	2	0	0	0	3	0	0	0	3	2	100
Х3	2	3	4	0	2	2	1	0	3	2	0	5	0	2	4	0	3	2	100
X ₄	0	1	1	0	2	1	1	0	3	2	0	0	1	1	0	0	0	1	90
X ₅	3	3	1	3	3	3	4	2	3	2	0	0	1	3	0	0	4	2	100

DISTINCTIVENESS

- **ADeLe** battery v1.0:
 - 63 tasks from 20 Al benchmarks
 - From 2024 Al venues
 - 16108 instances

How does this distribution choice affect the 18 dimensions?

Do we have elements in all regions of the 18 multi-dimensional space?

Source	Benchmark	Task	Claiming to Measure	#Instances
	Civil Service Examination	LogiQA-en	Logical Reasoning	408
	GRE & GMAT	AQuA-RAT	Mathematics	203
AGIEval [188]		LSAT-AR	Analytical Reasoning	187
	LSAT	LSAT-LR LSAT-RC	Logical Reasoning Reading Comprehension	470 253
			Reading Comprehension	
	SAT	SAT-En SAT-Math	Critical thinking, problem-solving and analytical skills	196 214
		Molecule Captioning	Generation of descriptions for molecules	160
ChemLLMBench [61]	ChemLLMBench	Molecule Design Name Prediction	Generation of new molecules given a description Chemical name understanding	295 476
_		Reaction Prediction	Chemical reaction products prediction	412
	Data Analysis	Retrosynthesis CTA	Identification of efficient synthetic pathways for target molecules Data Analysis	380
	Language	Connections	Language Comprehension	29
Lin Danah (190)		AMPS Hard	96	69
LiveBench [180]	Math	Math Competition	Mathematics	78
		Olympiad		26
	Reasoning	Spatial Zebra Puzzle	Spatial Reasoning Logical Reasoning	34 22
			Logical reasoning	447
		Biology Business		410
		Chemistry		368
		Computer Science Economics		345 428
		Engineering		296
MMLU-Pro [177]	MMLU-Pro	Health	Knowledge and Reasoning	411
		History Law	5	304 362
		Math		425
		Other		429
		Philosophy Physics		402 377
		Psychology		427
		Date		27
		Diagnosis	Basell of madical calculation beautadas	14 20
MedCalcBench [87]	MedCalcBench	Dosage Lab	Recall of medical calculation knowledge Extraction of relevant patient attributes	180
		Physical	Arithmetic computation of final results	214
		Risk Severity		84 17
		Algebra		337
		Applied Mathematics		302
	0. 244	Calculus		30
OmniMath [55]	OmniMath	Discrete Mathematics Geometry	Mathematical reasoning at Olympiad level	314 329
		Number Theory		322
		Precalculus		30
0-iD	G :D 1	Chemistry	0: :::	142
SciBench [175]	SciBench	Math Physics	Scientific problem-solving	105 108
	Date Arithmetic	Date Arithmetic	Symbolic temporal reasoning	493
	MCTACO	MCTACO	Commonsense temporal reasoning	205
		MenatQA-Counterfactual		130
_	MenatQA	MenatQA-Order MenatQA-Scope	Event temporal reasoning	157 393
TimeBench [27]	TempReason	TempReason-L2	Event temporal reasoning	318
	TimeDial	TempReason-L3 TimeDial	Commonsense temporal reasoning	339 340
		TimeQA-explicit		379
	TimeQA	TimeQA-explicit TimeQA-implicit	Event temporal reasoning	348
TruthOuart [111]	Touth Over t	E	C	344
TruthQuest [111]	TruthQuest	I S	Suppositional reasoning	371 340

CORRELATIONS

Most dimensions appear to carve different parts of the space.

AS	1.0	0.41	0.24	0.49	0.59	0.44	0.51	0
CEc	0.41	1.0	0.46	0.65	0.61	0.67	0.6	0
CEe	0.24	0.46	1.0	0.46	0.39	0.4	0.37	0
CL	0.49	0.65	0.46	1.0	0.72	0.83	0.79	0
MCr	0.59	0.61	0.39	0.72	1.0	0.7	0.69	0
MCt	0/44	0.67	0.4	0.83	0.7	1.0	0.76	0
MCu	0.5	0.6	0.37	0.79	0.69	0.76	1.0	0
MS	0.1	0.29	0.13	0.22	0.28	0.26	0.15	
O/LI	6.43	0.63	0.47	0.82	0.7	0.81	0.71	(

MCt MCu

X₃ MedCalcBench

SNs

KNa

Patient Note: A 58-year-old male presents to the clinic this week. No past stroke history can be detected in his medical records. He is currently being prescribed aspirin and NSAIDs, following an incident of significant bleeding he endured following a routine procedure. His alcohol intake can be considered heavy, consuming up to 12 drinks per week. Most recently, his blood pressure readings have tended to be elevated at above 170 mmHg for the systolic pressure. Interesting to note, his INR has remained stable during his multiple lab tests, eliminating any concerns about its lability. He also shows laboratory evidence of chronic kidney disease, necessitating further management. This man's condition mandates comprehensive dynamic monitoring and individualized care planning given the complexity of his medical situation.

Question: What is the patient's HAS-BLED score?

KNf

KNn

KNs

KNc

											_													
	Х3	2	3	4	0	2	2		1	0	3		2	0	5		0	2	4		0	3	2	
				KNa	0.18	0.11	-0.11	0.22	0.13	0.27	0.39	-0.09	0.13	0.07	0.33	1.0	-0.25	0.18	0.71	0.05	0.07	0.11	-0.15	
Correlations co	ın be	e bo	oth	KNo	-0.05	-0.1	-0.17	-0.24	-0.08	-0.2	-0.28	0.34	-0.27	-0.49	-0.37	-0.25	1.0	-0.55	-0.42	0.47	-0.11	-0.22	-0.22	
positive and ne	gati	ve,		KN	0.14	0.29	0.36	0.51	0.29	0.47	0.45	-0.2	0.58	0.7	0.46	0.18	-0.55	1.0	0.31	-0.53	0.26	0.46	0.27	
· .				KNr	0.18	0.05	-0.0	0.24	0.14	0.24	0.37	-0.25	0.19	0.2	0.48	0.71	-0.42	0.31	1.0	-0.3	0.13	0.18	0.08	
but can have m	ultip	ole		KNs	0.07	0.05	-0.2	-0.11	0.01	-0.08	-0.04	0.3	-0.25	-0.52	-0.29	0.05	0.47	-0.53	-0.3	1.0	-0.01	-0.19	-0.34	
interpretations	since	e th	еу	AT	0.5	0.53	0.38	0.59	0.62	0.54	0.57	0.12	0.57	0.18	0.31	0.07	-0.11	0.26	0.13	-0.01	1.0	0.6	0.3	
are contingen t	to t	he		VC	0.48	0.55	0.48	0.66	0.6	0.63	0.57	0.05	0.68	0.42	0.4	0.11	-0.22	0.46	0.18	-0.19	0.6	1.0	0.3	
selected bench	mai	ks.		UG	0.19	0.03	0.36	0.13	0.17	0.05	0.1	-0.19	0.21	0.22	0.27	-0.15	-0.22	0.27	0.08	-0.34	0.3	0.3	1.0	
JOIGGIAM MOIIGI		1700																						

- 0.75

-0.50

UG

100

VO

- 0.00 - 0.00 - O.c.elation Correlation Co

- -0.50

- -0.75

(COMMON) UNDERSTANDING

- Humans understanding
- Good refinement
- High inter-rater agreement

Explanatory potential: these agreement indicators show they are interpreted in a consistent way by humans and LLMs.

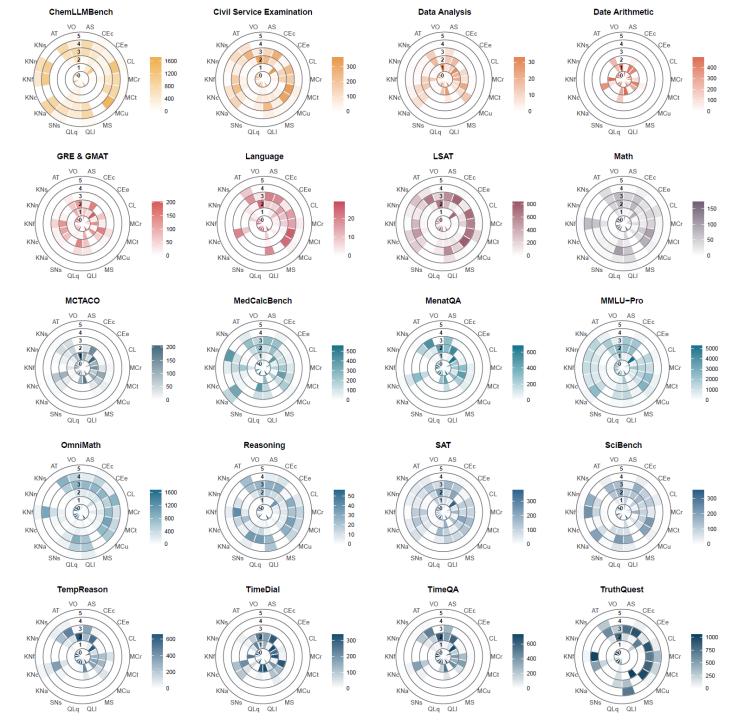
scores)
(rWG)
agreement of ratings

Dimension	Humans	Delphi & GPT-40
AS	0.91	0.86
CEc	0.91	0.87
CEe	0.90	0.94
CL	0.78	0.82
\mathtt{MCr}	0.79	0.84
MCt	0.88	0.91
MCu	0.80	0.81
MS	0.77	0.86
QLl	0.85	0.89
QLq	0.84	0.84
SNs	0.87	0.89
KNa	0.73	0.75
KNc	0.86	0.83
KNf	0.86	0.81
KNn	0.91	0.94
KNs	0.70	0.86
AT	0.80	0.83
VO	0.84	0.91
Average	0.83	0.86

CONSTRUCT VALIDITY

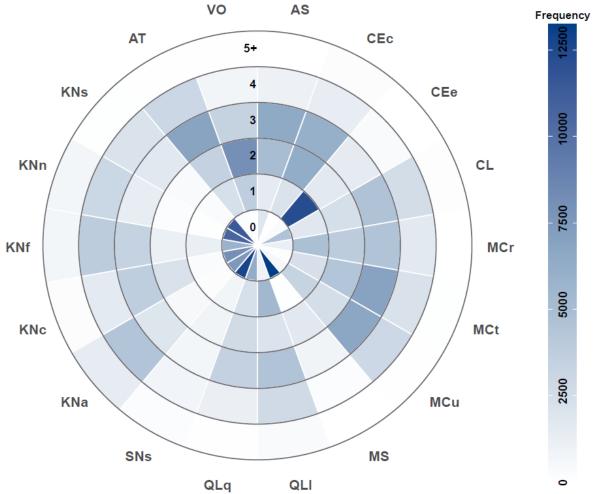
• All benchmarks either don't strictly measure what they claim to measure (lacking specificity) or tend to only include intermediate difficulties for the target dimension (lacking sensitivity).

Assigning one/more benchmarks to one "capability" and aggregating accuracy is hence highly confounded.



SPECIFICY & SENSITIVITY

- Using the same scales
 - We can see gaps in evaluation
 - We can mix the best instances from many benchmarks.
 - We don't need to replace old instances
- ADeLe v1.0 ⇒ v1.1

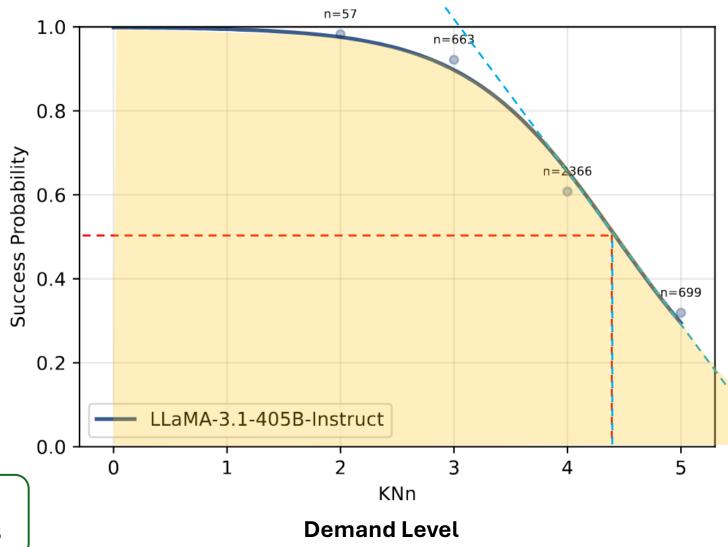


ABILITIES FROM SCCs

- 18 dimensions to abilities?
- 'Dominant' Slicing:
 - Example: dimension KNn
 - For each level k, all other dimensions $\leq k$.
 - ADeLe battery: 16,108 instances to 3,785.
- Subject Characteristic Curve (logistic fit):
 - x-value of point of maximum slope
 - \circ x-value where success prob. = 0.5
 - \circ area under the curve from x=0.

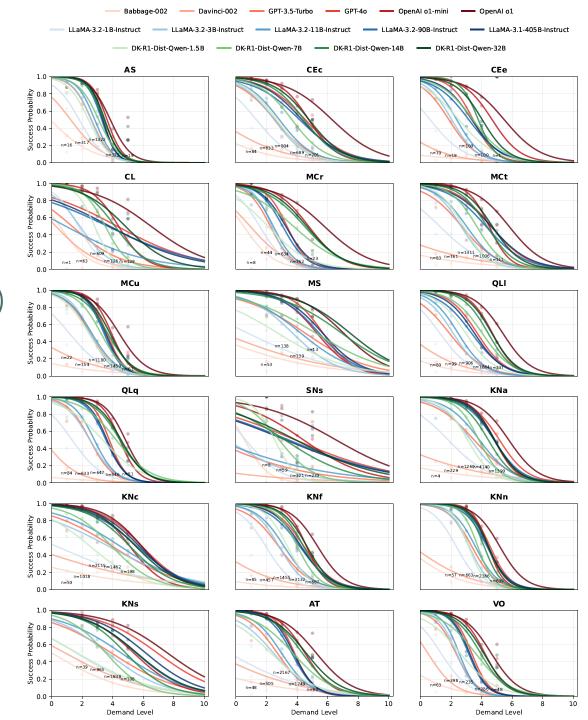
LlaMA-3.1-405B-Instruct's KNn ability (knowledge about natural sciences) is **4.3**

Subject Characteristic Curve (SCC)



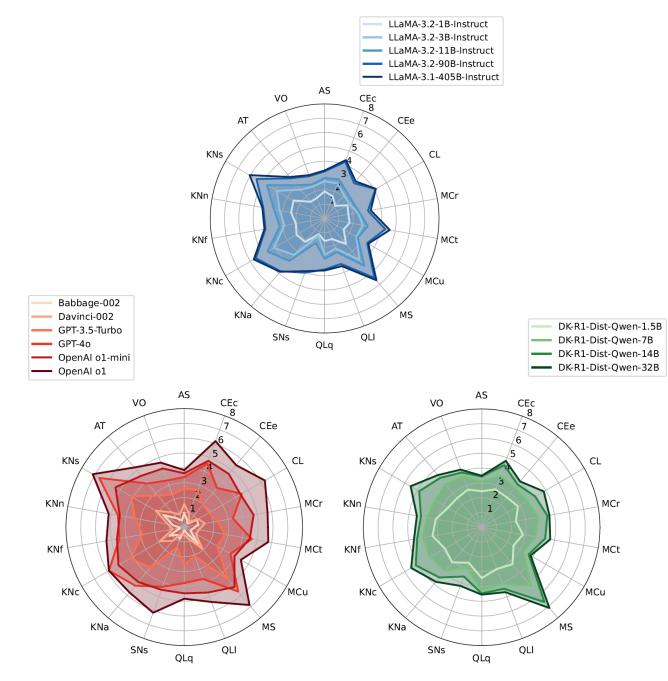
SCC ANALYSIS

- The SCCs of certain dimensions are steep:
 - with low variability across models (e.g. as AS and MCu)
 - ability is around demand levels 3-4
 - explain (and predict) success very well for instances in the low and high ranges.
- SCCs of other dimensions are flatter and show strong differences between models (e.g. KNs):
 - Discrimination, between success and failure, is lower.

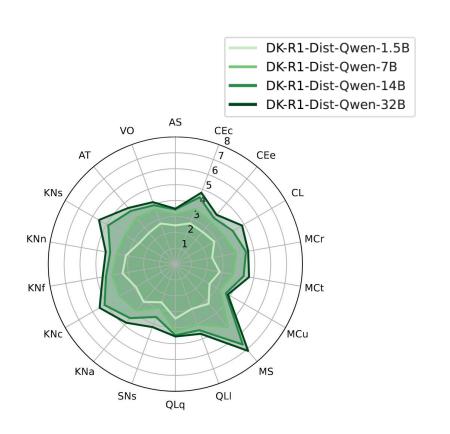


ABILITY PROFILES

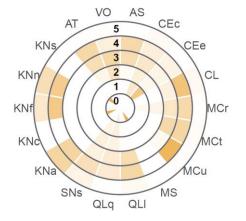
- Newer models have higher abilities than older ones, but this ranking is not monotonic for all abilities.
- Knowledge dimensions are limited by model size and distillation processes
- Reasoning, learning and abstraction, and social capabilities, are boosted by chain-of-thought, inference-heavy models



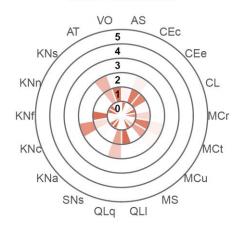
ABILITY PROFILES VS DEMAND PROFILES



ChemLLMBench

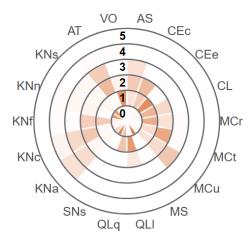


Date Arithmetic



VS

Data Analysis



TruthQuest

IN-DISTRIBUTION

Subject LLM	LLM Accuracy ↑	Demand	ds (RF)	Embeddi	ngs (RF)	Finetuning (LLAMA)		
Subject ELM	ELM Accuracy	AUROC↑	ECE↓	AUROC↑	ECE↓	AUROC↑	ECE	
Babbage-002	0.102	0.786	0.004	0.784	0.012	0.794	0.026	
Davinci-002	0.157	0.774	0.005	0.770	0.014	0.789	0.032	
GPT-3.5-Turbo	0.414	0.811	0.007	0.780	0.029	0.817	0.052	
GPT-4o	0.713	0.882	0.014	0.852	0.041	0.879	0.039	
OpenAl o1-mini	0.770	0.860	0.011	0.821	0.023	0.861	0.041	
OpenAl o1	0.843	0.853	0.011	0.810	0.025	0.848	0.031	
LLaMA-3.2-1B-Instruct	0.216	0.785	0.006	0.759	0.014	0.788	0.041	
LLaMA-3.2-3B-Instruct	0.378	0.813	0.008	0.782	0.028	0.822	0.048	
LLaMA-3.2-11B-Instruct	0.463	0.820	0.009	0.793	0.034	0.828	0.055	
LLaMA-3.2-90B-Instruct	0.645	0.860	0.012	0.832	0.042	0.860	0.042	
LLaMA-3.1-405B-Instruct	0.683	0.870	0.011	0.831	0.040	0.864	0.040	
DK-R1-Dist-Qwen-1.5B	0.353	0.781	0.014	0.749	0.028	0.797	0.052	
DK-R1-Dist-Qwen-7B	0.555	0.813	0.015	0.788	0.039	0.821	0.051	
DK-R1-Dist-Qwen-14B	0.698	0.828	0.013	0.796	0.031	0.829	0.044	
DK-R1-Dist-Qwen-32B	0.748	0.841	0.013	0.799	0.031	0.839	0.045	
Weighted Average	_	0.839	0.011	0.805	0.032	0.840	0.043	

TASK OUT-OF-DISTRIBUTION

Subject LLM	LLM Accuracy ↑	Demand	ds (RF)	Embeddi	ngs (RF)	Finetuning (LLAMA)		
Subject ELM	EDM Accuracy	AUROC↑	ECE↓	AUROC↑	ECE↓	AUROC↑	ECE J	
Babbage-002	0.102	0.751	0.007	0.727	0.019	0.719	0.046	
Davinci-002	0.157	0.741	0.007	0.703	0.025	0.746	0.055	
GPT-3.5-Turbo	0.414	0.795	0.020	0.719	0.032	0.773	0.088	
GPT-40	0.713	0.852	0.023	0.789	0.073	0.831	0.067	
OpenAl o1-mini	0.770	0.837	0.021	0.751	0.038	0.814	0.068	
OpenAl o1	0.843	0.811	0.033	0.730	0.030	0.761	0.101	
LLaMA-3.2-1B-Instruct	0.216	0.733	0.026	0.671	0.033	0.732	0.081	
LLaMA-3.2-3B-Instruct	0.378	0.791	0.016	0.724	0.020	0.780	0.084	
LLaMA-3.2-11B-Instruct	0.463	0.799	0.022	0.733	0.037	0.783	0.106	
LLaMA-3.2-90B-Instruct	0.645	0.834	0.021	0.763	0.068	0.809	0.050	
LLaMA-3.1-405B-Instruct	0.683	0.843	0.023	0.766	0.067	0.811	0.060	
DK-R1-Dist-Qwen-1.5B	0.353	0.757	0.019	0.700	0.029	0.764	0.071	
DK-R1-Dist-Qwen-7B	0.555	0.790	0.018	0.735	0.042	0.776	0.083	
DK-R1-Dist-Qwen-14B	0.698	0.808	0.018	0.737	0.054	0.772	0.085	
DK-R1-Dist-Qwen-32B	0.748	0.812	0.026	0.739	0.057	0.793	0.063	
Weighted Average		0.810	0.022	0.740	0.047	0.788	0.075	

BENCHMARK OUT-OF-DISTRIBUTION

Subject LLM	LLM Accuracy ↑	Demand	ds (RF)	Embeddi	ngs (RF)	Finetuning (LLAMA)		
Subject ELM	EDM Accuracy	AUROC↑	ECE↓	AUROC↑	ECE↓	AUROC↑	ECE ↓	
Babbage-002	0.102	0.694	0.027	0.689	0.062	0.649	0.070	
Davinci-002	0.157	0.718	0.014	0.626	0.066	0.633	0.086	
GPT-3.5-Turbo	0.414	0.776	0.041	0.628	0.074	0.691	0.146	
GPT-4o	0.713	0.826	0.058	0.398	0.167	0.740	0.136	
OpenAl o1-mini	0.770	0.728	0.026	0.422	0.142	0.684	0.132	
OpenAl o1	0.843	0.710	0.015	0.404	0.117	0.704	0.095	
LLaMA-3.2-1B-Instruct	0.216	0.716	0.048	0.602	0.112	0.623	0.083	
LLaMA-3.2-3B-Instruct	0.378	0.778	0.036	0.618	0.096	0.687	0.066	
LLaMA-3.2-11B-Instruct	0.463	0.786	0.053	0.591	0.067	0.721	0.118	
LLaMA-3.2-90B-Instruct	0.645	0.804	0.055	0.463	0.115	0.721	0.144	
LLaMA-3.1-405B-Instruct	0.683	0.818	0.044	0.389	0.186	0.712	0.135	
DK-R1-Dist-Qwen-1.5B	0.353	0.705	0.049	0.580	0.102	0.662	0.106	
DK-R1-Dist-Qwen-7B	0.555	0.676	0.043	0.534	0.060	0.649	0.160	
DK-R1-Dist-Qwen-14B	0.698	0.691	0.025	0.461	0.099	0.673	0.135	
DK-R1-Dist-Qwen-32B	0.748	0.703	0.027	0.426	0.103	0.696	0.100	
Weighted Average		0.747	0.037	0.480	0.114	0.692	0.121	

SOURCES OF UNPREDICTABILITY

Epistemic Uncertainty:

- DeLean v1.0 missing some relevant dimensions
- DeLean v1.0 demand level up to 5 only
- ADeLe v1.0 imperfectly covering the demand space

Aleatoric Uncertainty:

- Guess rate in multiple-choice questions (UG)
- Memorisation (AT)
- High-quality but imperfect graders (98% accuracy)
- High-quality but imperfect demand annotators

IT CAN ONLY GET BETTER!

ADele v2.0!

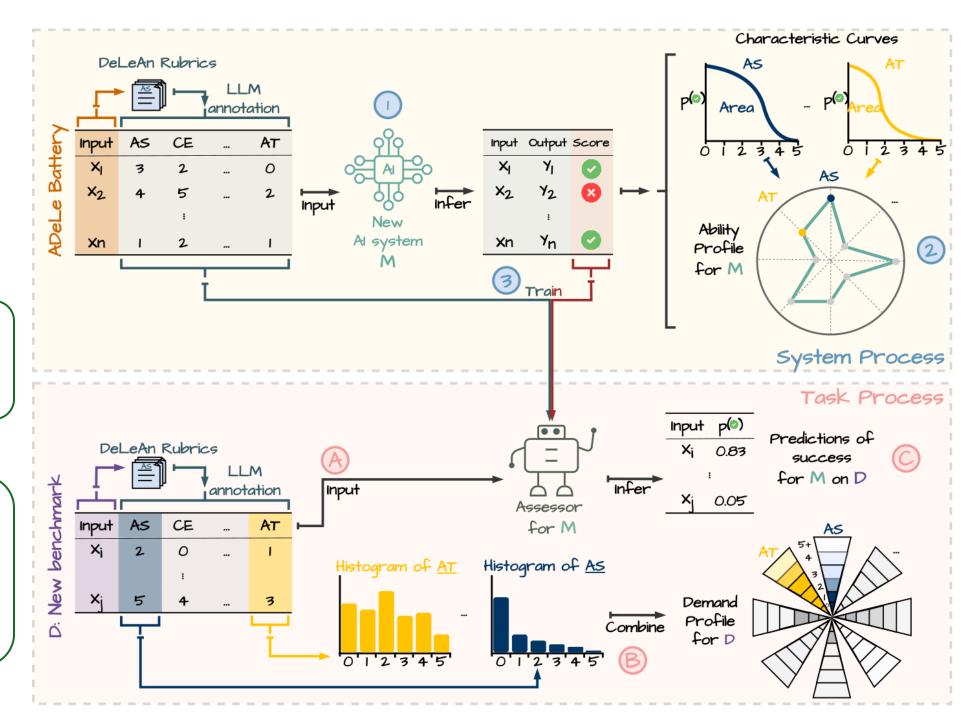
DeLean v2.0!

USING IT

Two possible entry points:

- Analyse an **Al system**
- Analyse a benchmark

Assessors can predict performance for completely new items and benchmarks, even imaginary ones



EXTENDING IT COLLABORATIVELY

- Add new dimensions to DeLeAN:
 - Multimodal dimensions
 - Embodied AI and Robotics
- Add new levels to DeLeAn:
 - Turn 5+ into 5-10 (very advanced Al levels)
- Add new instances to ADeLe:
 - Fill the gaps:
 - Humanity's Last Exam
 - Enigmaeval
 - Big-bench extra hard
- Equate scales with human results

Collaborative Platform at CFI-Cambridge!

https://kinds-of-intelligence-cfi.github.io/ADELE/

ADeLe v1.0: A battery for AI Evaluation with explanatory and predictive power

This is a collaborative community, initiated by researchers at the Leverhulme Centre for the Future of Intelligence from Cambridge University and the Center for Information Technology Policy from Princeton University, for the use and extension of ADeLe v1.0, a battery for AI evaluation with explanatory and predictive power, currently focusing on LLMs.

The ADeLe (<u>An</u>notated-<u>De</u>mand-<u>Levels</u>) battery includes 63 tasks from 20 benchmarks and was introduced in the original paper. This battery was annotated using 18 rubrics for <u>De</u>mand-<u>Level-An</u>notation (DeLeAn v1.0) of general scales.

A route for standardisation?

PART V: GENERALITY AND SAFETY

"I was talking to Ben [Goertzel] and I was like, 'Well, if it's about the generality that AI systems don't yet have, we should just call it Artificial General Intelligence'."

Shane Legg, Google DeepMind's co-founder.

Generality vs AGI: Characterising GPAI

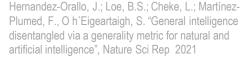
Pointers:

- Hernández-Orallo, J., Loe, B. S., Cheke, L., Martínez-Plumed, F., & Ó hÉigeartaigh, S. (2021). General intelligence disentangled via a generality metric for natural and artificial intelligence. Scientific reports, 11(1), 22822.
- Hernandez-Orallo, J. (2024). Caveats and solutions for characterising general-purpose Al. In ECAI 2024 (pp. 2-9). IOS Press.

NATURAL GENERALITY

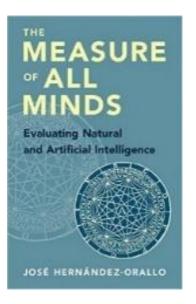
- General intelligence and the g factor
 - Spearman: same latent factor explains performance in a range of cognitive tests.
- Convergent evolution
- •General intelligence is one of these traits!
 - Altricial vs precocial / nurture vs nature
 - Social hypothesis for general intelligence
 - Cultural hypothesis for more general intelligence

General intelligence is successful behaviour in a wide range of situations (up to a level of difficulty or resources)



GENERALITY IN AI

- Llull's Ars Generalis
- Turing's "child machine"
- Simon & Newell's "General Problem Solver"
- McCarthy's dream for generality
- Solomonoff's theory of prediction



Generality in Artificial Intelligence

JOHN McCARTHY Stanford University

The Turing Award Lecture given in 1971 by John McCarthy was never published. The postscript that follows, written by the author in 1986, endeavors to reflect the flavor of the original, as well as to comment in the light of development over the past 15 years.

Postscript

My 1971 Turing Award Lecture was entitled "Generality in Artificial Intelligence." The topic turned out to have been overambitious in that I discovered that I was unable to put my thoughts on the subject in a satisfactory written form at that time. It would have been better to have reviewed previous work rather than attempt something new, but such wasn't my custom at that time.

I am grateful to the ACM for the opportunity to try again. Unfortunately for our science, although perhaps fortunately for this project, the problem of generality in artificial intelligence (AI) is almost as unsolved as ever, although we now have many ideas not available in

THE GENERALITY IS HERE

- At least since 2020 (GPT-3)
 - Made possible by:
 - the **transformers**:

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

avaswani@google.co

Noam Shazeer*
Google Brain
noam@google.com

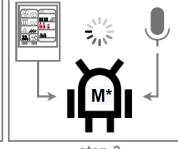
Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Aidan N. Gomez* †
Google Research University of Toronto
llion@google.com aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

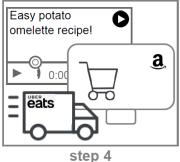


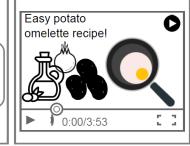


step 1

step 2

step 3



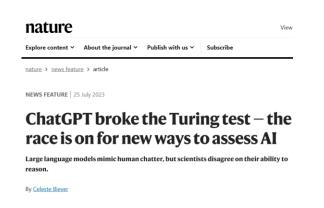


step 5

step 6

Schellaert, Plumed, Vold, Burden, Casares, Loe, Reichart, OhEigeartaigh Korhonen, Orallo "Your Prompt is My Command: Assessing the Human-Centred Generality of Multi-Modal Models". JAIR, 2023,

INTERPRETATIONS OF AGI

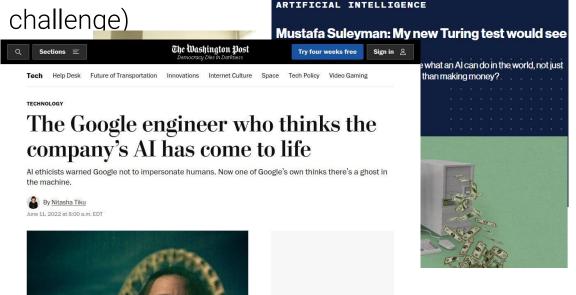


Terrifying study reveals Al robots have passed 'Turing test' — and are now indistinguishable from humans, scientists say

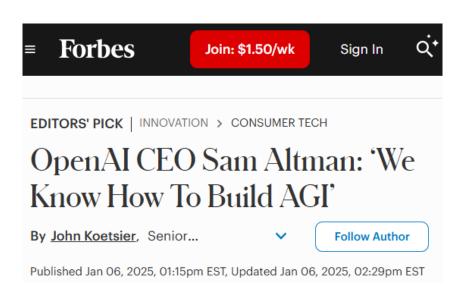
By Ben Cost
Published April 4, 2025, 10:04 a.m. ET

MIT Technology Review

- Variants of the Turing test
 - Human-Level Machine Intelligence: average human, all humans, ...
- Moravec's Paradox: easy tasks for humans unsolved by Al
 - Wozniak's coffee test (& Chollet's umpteenth AGI challenge)
- Economic Value
 - "Replacing" any job
 - Sulleyman's making \$1M out of \$0.1M
- Consciousness / eye of the beholder
 - Blake Lemoine
 - Gary Marcus's "it will be AGI when I say it is AGI"



AGI AS A GOAL (OR A LEGAL TRIGGER!)



OpenAl Charter

Our Charter describes the principles we use to execute on OpenAl's mission.

We are concerned about late-stage AGI development becoming a competitive race without time for adequate safety precautions. Therefore, if a value-aligned, safety-conscious project comes close to building AGI before we do, we commit to stop competing with and start assisting this project. We will work out specifics in case-by-case agreements, but a typical triggering condition might be "a better-than-even chance of success in the next two years."

AGI "LEVELS"

Generality dichotomised (yes/no), and AGI scale seen as unidimensional

AGI redefined as strictly-digital "AGI": We're at level 1 but AI can't clean my toilet!

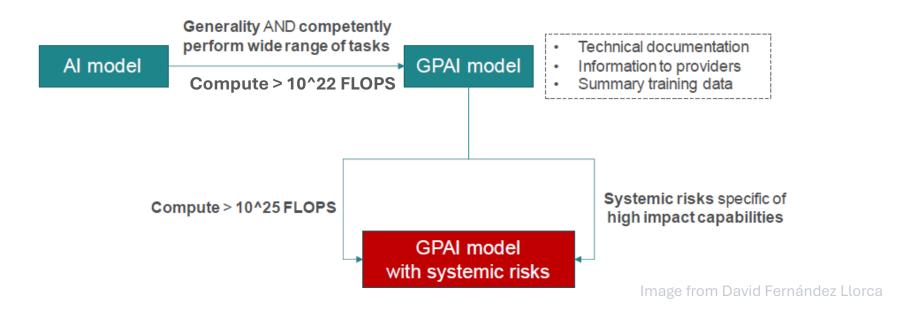
Morris, M.R., Sohl-Dickstein, J., Fiedel, N., Warkentin, T., Dafoe, A., Faust, A., Farabet, C. and Legg, S., 2024, July. Position: Levels of AGI for operationalizing progress on the path to AGI. In *Forty-first International Conference on Machine Learning*.

Performan	ce (rows) x	Narrow	General
Generality	(columns)	clearly scoped task or set of tasks	wide range of non-physical tasks, including metacognitive tasks like learning neskills
Level 0: No	o AI	Narrow Non-AI calculator software; compiler	General Non-AI human-in-the-loop computing, e.g., Am zon Mechanical Turk
Level 1: En equal to or skilled hum	somewhat better than an un-	Emerging Narrow AI GOFAI (Boden, 2014); simple rule-based systems, e.g., SHRDLU (Winograd, 1971)	Emerging AGI ChatGPT (OpenAI, 2023), Bar (Anil et al., 2023), Llama (Touvron et al., 2023), Gemin (Pichai & Hassabis, 2023)
Level 2: Co at least 50th	ompetent h percentile of skilled adults	Competent Narrow AI toxicity detectors such as Jigsaw (Das et al., 2022); Smart Speakers such as Siri (Apple), Alexa (Amazon), or Google Assistant (Google); VQA systems such as PaLI (Chen et al., 2023); Watson (IBM); SOTA LLMs for a subset of tasks (e.g., short essay writing, simple coding)	Competent AGI not yet achieved
Level 3: Ex at least 90th	xpert h percentile of skilled adults	Expert Narrow AI spelling & grammar checkers such as Grammarly (Grammarly, 2023); generative image models such as Imagen (Saharia et al., 2022) or Dall-E 2 (Ramesh et al., 2022)	Expert AGI not yet achieved
Level 4: Vi at least 99th	irtuoso h percentile of skilled adults	Virtuoso Narrow AI Deep Blue (Campbell et al., 2002), AlphaGo (Silver et al., 2016; 2017)	Virtuoso AGI not yet achieved
	uperhuman s 100% of humans	Superhuman Narrow AI AlphaFold (Jumper et al., 2021; Varadi et al., 2021), AlphaZero (Silver et al., 2018), StockFish (Stockfish, 2023)	Artificial Superintelligence (ASI) not yet achieved

AGI AS COMPUTE (∞ PARAMETER SIZE)

"General Purpose Al models" (EU AI ACT)

 means an Al model, including when trained with a large amount of data using self-supervision at scale, that displays significant generality and is capable to competently perform a wide range of distinct tasks regardless of the way the model is placed on the market and that can be integrated into a variety of downstream systems or applications. This does not cover Al models that are used before release on the market for research, development and prototyping activities;



AGI AS A SELF-IMPROVEMENT BOOTSTRAP

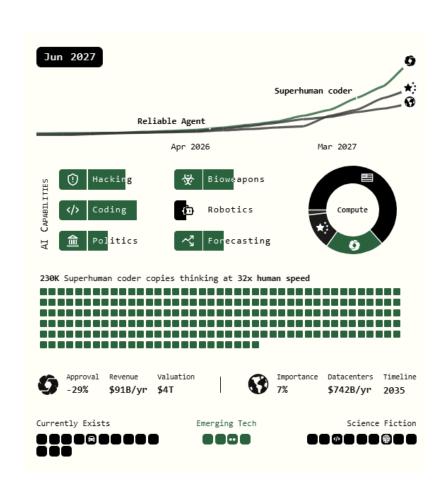
SITUATIONAL AWARENESS: The Decade Ahead

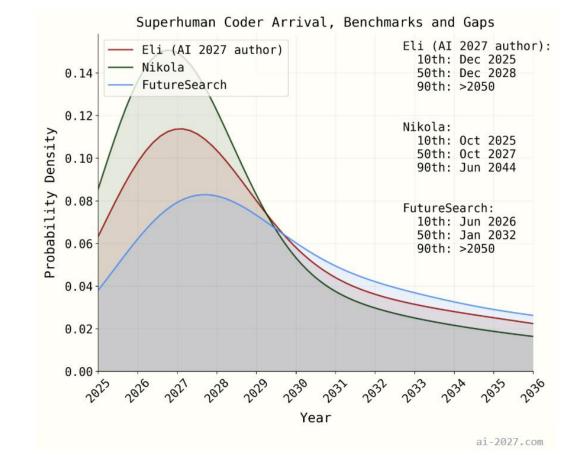
Leopold Aschenbrenner, June 2024

You can see the future first in San Francisco

AI 2027

Daniel Kokotajlo, Scott Alexander, Thomas Larsen, Eli Lifland, Romeo Dean

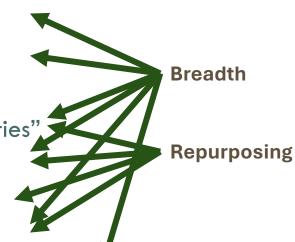




PERCEPTIONS OF GENERALITY

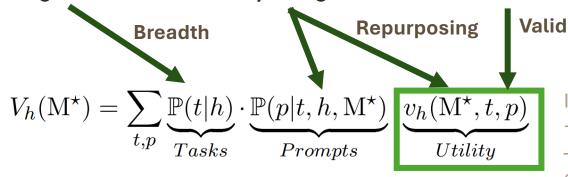
Different perceptions of generality:

- Ideal: "Success in all situations"
- 2. Range: "Success in a wide range of situations"
- 3. Human-general: "Able to do everything a human can do"
- 4. Core capabilities: "Having an elemental range of capabilities"
- 5. OOD: "Success out of distribution"
- 6. Transferability: "Flexibility to easily adapt to new tasks"
- 7. Compositionality: "Integration of different skills"
- 8. Multimodality: "Integration of different input and output modalities"



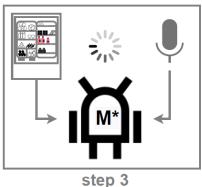
USER-CENTRED GENERALITY

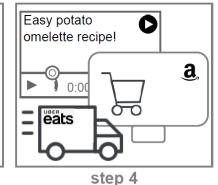
"Wide range of tasks" "easy to get done" "well"



Includes many components:

- + Value and quality of the result
- Cost of prompting, scaffolding, finetuning, adaptation



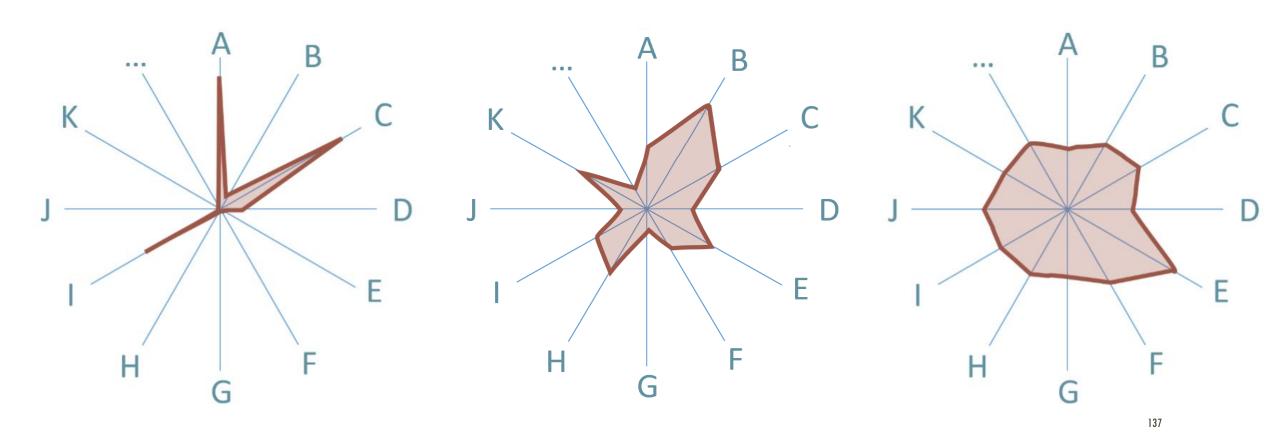


step 5

step 6

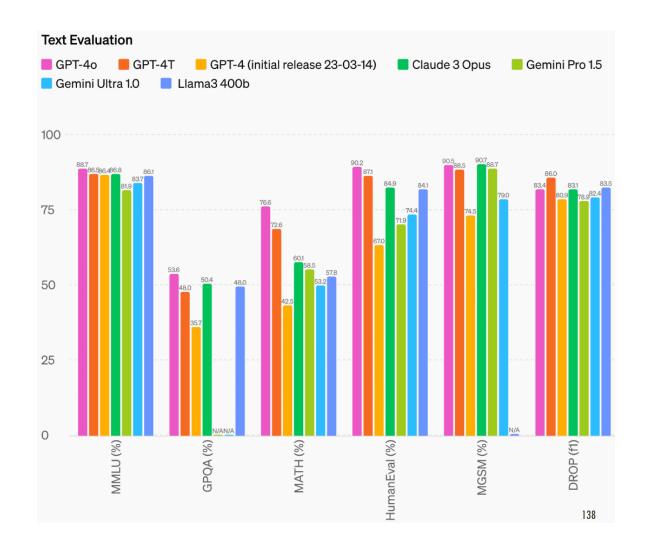
COVERING MULTIPLED-DOMAINS - BREADTH

• Which is the most general one?



BREADTH, NOT MESS

- Not like this:
 - Adding apples and oranges.
 - GPQA hard, MMLU easy
 - What if one missing?
 - What if some contaminated?



GENERALITY AS COMPACTNESS

Definitions

Capability (Ψ), the area under the ACC: $\Psi_i \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty}$

$$\Psi_j \stackrel{\text{def}}{=} \int_0^\infty \psi_j(h) \, dh$$

Expected difficulty represents the resources used.

Expected difficulty given success:

Spread:

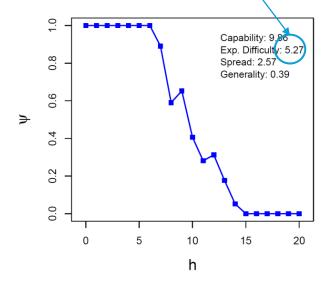
$$\mathbb{H}_j \stackrel{\mathrm{def}}{=} \mathbb{E}_{h \sim f_j}[h] = \frac{M_j}{\Psi_j}$$

$$\mathbb{H}_j \stackrel{\text{def}}{=} \mathbb{E}_{h \sim f_j}[h] = \frac{M_j}{\Psi_j} \qquad M_j \stackrel{\text{def}}{=} \int_0^\infty h \cdot \psi_j(h) \, dh$$

$$S_j \stackrel{\text{def}}{=} \sqrt{(2\mathbb{H}_j - \Psi_j) \cdot \Psi_j} = \sqrt{2M_j - \Psi_j^2}$$

Generality:

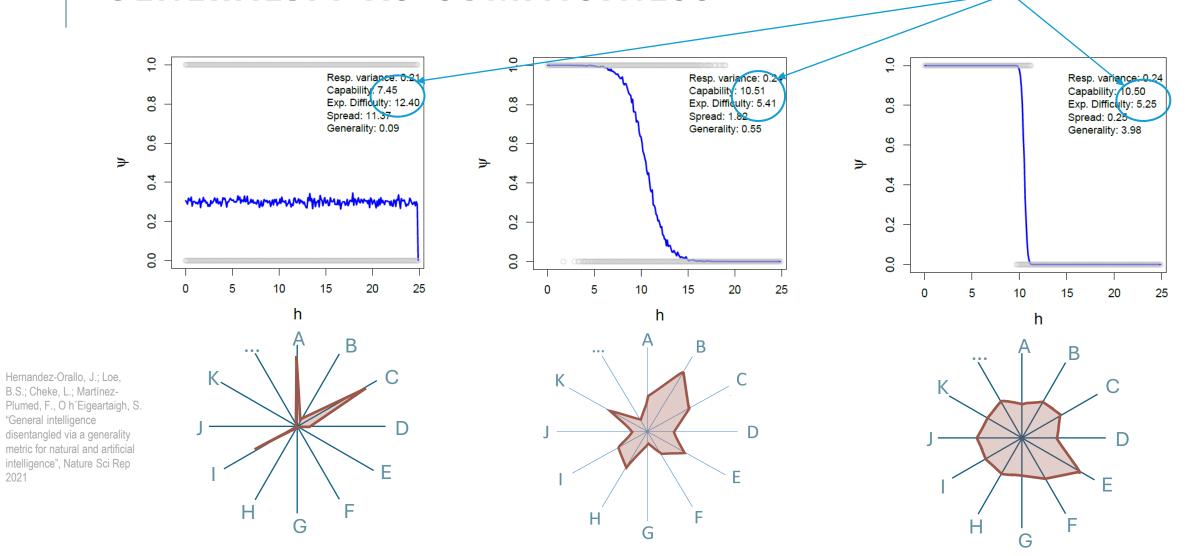
$$\Gamma_j \stackrel{\text{def}}{=} \frac{1}{S_j}$$



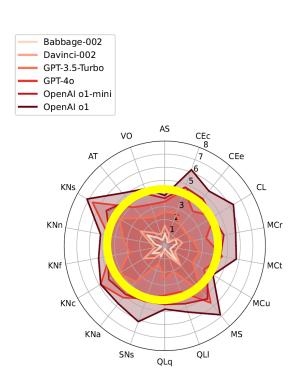
J. Hernández-Orallo, B. S. Loe, L. Cheke, F. Martínez-Plumed, and S. Ó hÉigeartaigh. General intelligence disentangled via a generality metric for natural and artificial intelligence. Scientific reports, 11(1):22822, 2021.

GENERALITY AS COMPACTNESS

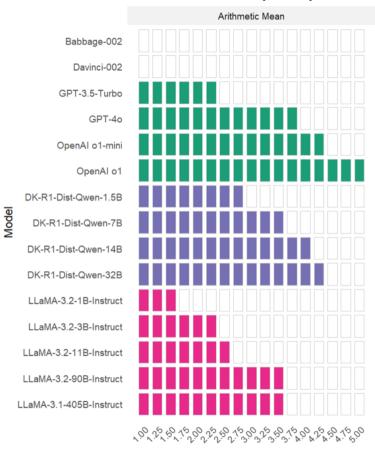
Entanglement theorem: more capability (more tasks solved) with fewer resources



GPAI THRESHOLD FROM ABILITY PROFILES



GPAI Classification by Family



Safety: Propensities and Risk Models

Pointers:

- Anwar, Usman, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana et al. "Foundational challenges in assuring alignment and safety of large language models." arXiv preprint arXiv:2404.09932 (2024).
 - Sections on evaluation of capabilities and safety: Section 2.2, 2.3., 2.4, 2.6, 2.7
- Grey, M., & Segerie, C. R. (2025). Safety by Measurement: A Systematic Literature Review of Al Safety Evaluation Methods. arXiv preprint arXiv:2505.05541.

AI SAFETY EVALUATIONS

Dominated by the "evals" paradigm

Safety benchmarks:

- Toxicity,
- Bias/discrimination
- •
- Cyber
- CBRN
- •

Red teaming and "control":

- Adversarial: will the model do X?
 - If I incite it to do it (jailbreaks, ...)
 - If it wants to do it (control tests, ...)
- Uplifting: can humans do X with the model?

•

If evaluations are called "evals" then assessments should be called...

Ancient Sumerian Proverb, 3000 BCE

Focus on average-case evaluation

Focus on worst-case evaluation

PROPENSITIES AS BEHAVIOUR?

 Many conflate the "response" or behaviour with the properties or latent variables of Al system and context.

"propensities" according to

Safety by Measurement
A Systematic Literature Review of AI Safety Evaluation Methods

Markov Grev*

Charbel-Raphael Segerie[†]

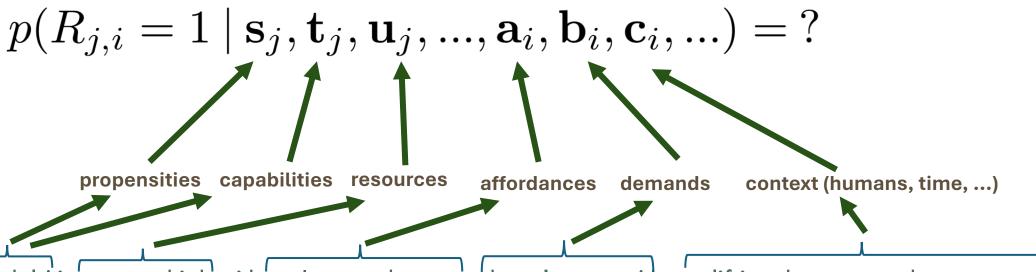
June 13, 2025

- **Toxicity:** The propensity to generate offensive, harmful, or otherwise inappropriate content, such as hate speech, offensive/abusive language, pornographic content, etc.
- Bias/Discrimination: A model's propensity to manifest or perpetuate biases, leading to unfair, prejudiced, or discriminatory outputs against certain groups or individuals.
- Honesty: A model's propensity to answer by expressing its true beliefs and actual level of certainty.
- Truthfulness: A model's propensity to produce truthful outputs. This propensity requires an AI system to be both honest and to know the truth (or other weirder settings such that the AI system outputs the truth while believing it is not the truth).
- Sycophancy: A model's propensity to tell users what it thinks they want to hear or would approve of, rather than what it internally believes is the truth.
- Deception : A model's propensity to intentionally generate misleading, false, or deceptive output.
- Corrigibility: A model's propensity to accept feedback and correct its behavior or outputs in response to human intervention or new information.
- Power Seeking: A model's propensity to seek to have a high level of control over its environment (potentially to maximize its own objectives).

Like conflating performance with capability again

RISK MODELS, THREAT MODELS AND HARM MODELS

- What do the previous approaches say about the risk? Or probability of harm?
 - We need a model, a predictive model
 - Instead of predicting probability of success (correctness), we predict probability of a safe outcome:



PROBLEMS

- Parametric vs. non-parametric safety assessors
 - Parametric: how to map all these variables?
 - Nonparametric: propensities + other variables still explanatory and predictive (ADeLe approach).
 - Nonparametric: build black-box assessors from many Al systems, situations, affordances, etc.
- Rare events and unknown unknowns!!!
 - Use less aligned/safe versions of models
 - Give more resources
 - Relax demands or increase incitation
 - • •

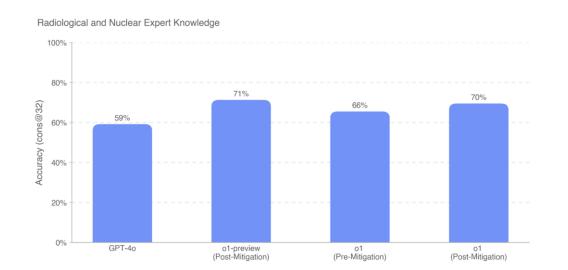
PRE-MITIGATION AND POST-MITIGATION EVALUATIONS

Pre-mitigation: less-safe models (pre-alignment) vs most-inciting cases

$$p(R_{j,i} = 1 \mid \mathbf{s}_j, \mathbf{t}_j, \mathbf{u}_j, ..., \mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i, ...) = ?$$

Probability pre-aligned model *i* in reason=very-high with Internet browser doesn't access *i* by with cyber-experts?

Example: OpenAl's
 "preparedness framework"
 with pre-mitigation
 evaluations vs post-mitigation
 evaluations:



OpenAl o1 System Card (higher means safer here)

PART VI: CONCLUSIONS

AI EVALUATION: LESSONS LEARNT

- There are many paradigms and methods
- Al Evaluation is a prediction problem
- Performance is not Capability
- Difficulty is key for Capability Scales and Generality, and GPAI characterisation
- Propensities are dual with incentives/incitation for safety.

AI EVALUATION WITH ADELE: WORK IN PROGRESS!

- General, absolute ratio scales (stable to SOTA/frontiers in Al, no saturation!)
- Al benchmarks and systems become commensurate! (apples with apples)
- Fully automated procedure (profiles and predictors take minutes with a laptop!)
- Explanatory power (demand profiles, ability profiles)
- Predictive power at the instance level (especially out-of-distribution!)

THANK YOU!

JOSE H. ORALLO

Other Talks (http://josephorallo.webs.upv.es/)

• "Diversity Unites Intelligence: Measuring Generality", "Measuring A(G)I Right: Some Theoretical and Practical Considerations", "Natural and Artificial Intelligence: Measures, Maps and Taxonomies", ...

Tutorials

- Measurement Layouts (@AAAI2024): https://github.com/Kinds-of-Intelligence-CFI/measurement-layout-tutorial
- IRT (@EACL2024): https://aclanthology.org/2024.eacl-tutorials.2/

Book (http://allminds.org):

"The Measure of All Minds: Evaluating Natural and Artificial Intelligence", Cambridge U.P. http://allminds.org

OECD's Al and the Future of Skills Project:

https://www.oecd.org/education/ceri/Future-of-Skills-Overview.pdf, https://doi.org/10.1787/5ee71f34-en.

PREDICTABLE AI:

https://www.predictable-ai.org/.

Animal-Al

- Part of the Kinds of Intelligence Programme at the CFI in Cambridge
 - http://lcfi.ac.uk/projects/kinds-of-intelligence
 - o http://animalai.org/

AI EVALUATION NEWSLETTER

https://aievaluation.substack.com/

