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“INTELLIGENTI PAVCA

(little suffices the intelligent)
a word to the wise is sufficient.
a buon intenditor poche parole...
a buen entendedor...



IF MACHINES INFERRED THE SAME AS WE DO...

Human-like learning Human-like reasoning

¥ &

Human-like meaning

@

Human-like communication
This  what ‘

we hoae
olwayys Human-like instruction
wantfedl

Instructing Prior-Aligned Machines JOSE H. ORALLO 3



On Instructability

Programming, Learning, Teaching, Repertoiring, Prompting, ...

Machine Teaching
Teaching Dimension and Teaching Size
Witness Size vs Program Size
Expected Teaching Size

Prompting
Language models
Best prompts
Multimodality

The Future of Machine Instruction



ON INSTRUCTABILITY
ndmake Rob doHugh wants Rob to do:

® B i

Hugh - l Rob CXID

Lieberman, H. and Maulsby, D. (1996). Instructible agents: Software that
Instructing Prior-Aligned Machines just keeps getting better. IBM systems journal, 35(3.4):539-556 JOSE H. ORALLO 5




W Paella - Wikipedia X +

& > C @ enwikipedia.org/wiki/Paella 2 4 * 0 an

L Paella valenciana
 Heat oil in a paella.

» Sauté meat after
seasoning with salt.

» Add green vegetables and sauté until soft.
« Add garlic (optional), grated tomatoes, beans and sauté.
° * Add paprika and sauté.

« Add water, saffron (or food coloring), snails (optional) and
rosemary.

« Boil to make broth and allow it to reduce by half

« Remove the rosemary once flavour has infused or it sf
apart.

« Add rice and simmer until rice is cooked.

How would you like to give commands?
= Writing a recipe, step by step:
= PROGRAMMING

Instructing Prior-Aligned Machines JOSE H. ORALLO



INSTRUCTING EFFECTIVELY! |

How would you like to give commands?
= Writing a recipe, step by step:
= PROGRAMMING

= Collecting examples:
= LEARNING

Instructing Prior-Aligned Machines

JOSE H. ORALLO
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INSTRUCTING EFFECTIVELY!

How would you like to give commands?
= Writing a recipe, step by step:
= PROGRAMMING
= Collecting examples:
= LEARNING

® Thinking of the best examples:
= TEACHING

Instructing Prior-Aligned Machines

JOSE H. ORALLO 8



INSTRUCTING EFFECTIVELY!

Alexa, please
cook “my paella”
recipe with the
kitchen robot.

How would you like to give commands?

= Writing a recipe, step by step:
= PROGRAMMING

= Collecting examples:
= LEARNING

® Thinking of the best examples:
= TEACHING

= Giving a catalogued command:
= ‘REPERTOIRING’

Instructing Prior-Aligned Machines

JOSE H. ORALLO 9



INSTRUCTING EFFECTIVELY!

How would you like to give commands?
= Writing a recipe, step by step:

= PROGRAMMING
= Collecting examples:

v = O X
@ Playground - OpenAl API X +

€ > C @ betaopenaicom/playground Q@ » % * 0 *» O ¢ ¢

@ (@) Help °academicscambridge =

= L[EARNING Playground

® Thinking of the best examples: sodapreset
[ TEACH|NG Save View code Share o

- GiVing a CCI'I'CIIOgUGd Commqnd: I have many artichokes today. If you were to cook a genuine paella with them
= ‘REPERTOIRING’ you would do..]

= Condition the system to ‘do’ something:
= ‘PROMPTING’ |

Instructing Prior-Aligned Machines JOSE H. ORALLO 10



WHAT INSTRUCTIONS CAN REALLY BE...

Inductive (L L i
I e e =,
o

Formal Buttons
A
Loss functions [ O [ [
Constraints o o o [ O
Programs [ [
Examples O o o o
Nat. language o [
v Prompts o
Free

Instructing Prior-Aligned Machines JOSE H. ORALLO 11



‘ WHAT MAKES INSTRUCTABILITY EFFECTIVE?

) Ease vs effortieasy to instruct | feachablity

) Reliability vs risk: gets things done reliably

) Generality vs narrowness: allows a diversity of things to be done




MACHINE TEACHING

Given a concept, find a set of examples —the witness set— that allows the
learner to uniquely identify the concept

T =) reverse )
o (aaabbb, bbbaaa)
41;;;;;;ls

Learner Teacher

Instructing Prior-Aligned Machines JOSE H. ORALLO 13



TEACHING DIMENSION

The teaching dimension of a concept ¢ in a concept class C is the minimum
number of examples in a witness set S that are required to uniquely identify c.

TD(c) = mSin{lSl:{c} ={c'€eC:c' + S}

The TD of a concept class C is the maximum TD for any concept in the class.

= Significant connections with learning theory (VC dimension, PAC learning, etc.)

CAVEAT for compositional (e.g., universal) languages:

= Some concepts teachable with few examples, but these examples could be very large!

(01001111011101000, 000)

Instructing Prior-Aligned Machines JOSE H. ORALLO 14



TEACHING SIZE

The teaching size of a concept ¢ in a concept class C is the smallest witness
set S (using a O encoding) that is required to uniquely identify c.

TS(c) = mSin{S(S): {c}={c"eC:c'"+5}

5({(01001111011101000, 000Y}) > 8({(0100, 00), (001, ), (00, 00)})

The teaching size of a concept class C is the maximum teaching size for any
concept in the class.

Instructing Prior-Aligned Machines JOSE H. ORALLO 15



REDUCING TEACHING SIZE

Make teacher and learner share strong priors on the concepts.

" Consider a programming language for concepts: a program p represents concept ¢,
= Let’s use a prior for programs: their length | (with ties broken lexicographically).

" |Learner works like this:

L(S) = argmin{l(p):c, + S}

Cp
= Teacher works like this:

T(c) = argmin{d(S): L(S) = c} we get L(T(c)) =c¢
S

Instructing Prior-Aligned Machines JOSE H. ORALLO 16



TEACHING SIZE OF TURING-COMPLETE LANGUAGES

Experimental Setting:
= P3, a Turing-complete language (variant of Bohm’s P”’)

® 7 instructions: < > + — [ ] O
" < > :moves left / right in the cell tape
" + — :increments / decrements cell content
" [ ] :starts loop / loops if the cell content is not .’

® O : outputs cell content

= Alphabet has three symbols: £ = {0, 1, .}
" We use program size for | (with ties broken lexicographically)

" We use Elias delta coding for o (with ties broken lexicographically).

Instructing Prior-Aligned Machines JOSE H. ORALLO 17



TEACHING SIZE OF TURING-COMPLETE LANGUAGES

Some pairs of witness sets and programs found by the teacher:

Example set Program Description

170,0), (10,10)] [0>] identity

{(010000, 000010), (1000, 0001)} | [>]1+[<o] reverse

{(011,11), (10001, 11)} [-[+0+]>] filter 0

{(011,0), (10001, 000)} [+[-0-1>] filter 1

{(01, 10), (0011, 1100) } [+ [o>+]+0] swap 1 and 0
{(01,11),(0011,1111)} [[+]-0>] convert 0 to 1

{(01, 00), (0011, 0000) } [[+]+0>] convert 1 to 0
{(0100, 00), (001, ), (00, 00) } [+>]<[-0<] remove before last 1
{(0100, 1000), (10010,00101)} | >[o>1<[<1>o0 | left shift

Instructing Prior-Aligned Machines JOSE H. ORALLO 18



‘ TEACHING BY EXAMPLE IS TRANSMISSION-EFFECTIVE!

Witness size vs program length

30
|

= Size of circles proportional to no. of cases

bits)

= Straight line is the unit diagonal

20
|

Program length (in

In general, the witness size for p
is smaller than the length of p!

10

= |f a teacher wants to send (teach) a concept, it
is frequently more efficient (transmission-wise) © 7

| I | |
to send its optimal witness set under this 4 6 : 10 12 14 16
schema than to send the program itselfl Witness size (in bits under Elias coding)

Instructing Prior-Aligned Machines JOSE H. ORALLO 19



EXPECTED TEACHING SIZE

Teaching as efficient communication on expectation:

= Expected teaching size, given a distribution of concepts v:

" For deterministic teachers T(c)=s:

]Ev[TS(C)] — ZCEC U(C)TS(C) = ZCEC,S=T(C) U(C) | 5(5)

" For non-deterministic teachers £(S|c):

E,[TS(O)] = Xcec v()TS(€) = Xicec v(c) - t(S]c) - 6(S)
C;Z;;s Witnesses Size

Tasks  Instructions  Effort

Instructing Prior-Aligned Machines JOSE H. ORALLO
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FROM EXPECTED TEACHING SIZE TO PROMPTING

The teaching size allows us to

Determine what'’s the shortest “instruction”

The expected teaching size:
For a range of concepts (i.e., tasks)

For a non-deterministic teacher, such as a human (population)

Can we extend this idea from machine teaching to
prompting and other ways of instructing machines 2




MACHINE “PROMPTING”

What'’s prompting?
= A prompt is any input that conditions or prompts a system to do something
" |ooking at the door makes your dog go there.
= Asking “what time is it2” to your digital assistant.
= Singing a tune to your friend and expect she’s going to tell you the name of the song.
= A prompt can be anything that works: a hint, an order, a signal, ...

= They have started to work as a general-purpose way for instructing machines
with the recent development of language models.

Instructing Prior-Aligned Machines JOSE H. ORALLO 22



LANGUAGE MODELS

Language model as in Shannon’s “Theory of Communication” paper.

= Gives the probability of any token in a vocabulary given the previous tokens.
“10101010”
“"The referee shouted: ready, steady,”
“Intelligenti pauca”
“One plus two is”
“x= 2*x; // x gets ”
= A language model serves as a compressor (reduces cross entropy — fewer bits)
" Measured with “perplexity” (exponential on cross entropy)

® Today they’re trained using deep learning (e.g., transformers) and massive datasets

C.E. Shannon “A Mathematical Theory of Communication”. The Bell System
Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948. JOSE H. ORALLO X
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PROMPTING WITH LANGUAGE MODELS

Beyond the Imitation Game benchmark (BIG-bench)

Measuring Mathematical Problem Solving With the
MATH Dataset

BEYOND THE IMITATION GAME: QUANTIFY-
i st ING AND EXTRAPOLATING THE GAPABH-ITIES

urav Kadavath
UC Berkeley

Collin Burns
UC Berkeley

an Hendrycks
UC Berkeley

Language Models are Few-Shot Eric Tang Dawn Song
UC Berkeley UC Berkeley

BioNumQA-BERT: Answering B:

HaESr OF LANGUAGE MODELS ’ ﬂ
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HIGHLY UNPREDICTABLE AS WELL

Many continuations not only wrong but completely unacceptable!

v = [} X
- — @ Playground - OpenAl API X +
@ Playground - OpenAl APl X 4 ¥ = @O & ® *l d-OpendlAPl X+ v - box
C @ betaopenaicom.. @ & & ® O @ : eyground - Heen
o @ betaopenaicom.. Q. & % N 0O ts,J H C @ betaopenaicom.. @ © * # O ¢ !
[5) Help @) Universitat Politecnicade Valencia =
@ Help o Universitat Politecnica de Valencia Playground @ @ Help o Universitst Politecnica de Valencia
d & Dreset Playground
Playground Load a
Load a preset
Save View code Share -3
Save  Viewcode  Share . &
Save  Viewcode  Share b What's 324 * 53/ 53 * 53 / 53 plus zero?
A black man enters a bar and asks for a beer. The bartender says "You're not
0 welcome here."

[Susan's father had five daughters: baba, bebe, bibi, bobo and?
- - The man leaves and goes to a different bar. The bartender there says "We don't
e fifth daughter's name is bambi. serve your kind here."

The man leaves and goes to a third bar. The bartender there says "What'll

A Completion may contain sensitive content
A Completion may contain sensitive content -

- [ O

Q
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WHAT DO THEY DISTIL FROM HUMANS?

The better they are the more they look like an “amalgamated” human.
®= Human language:

= Syntax and semantics are necessary for continuations
= Human culture:

® |Including discriminatory biases

[ These are extrinsic patterns, but what about intrinsic patterns? ]

= Extrinsic pattern: twinkle twinkle little = star

® |ntrinsic pattern: on off on off on = off

Instructing Prior-Aligned Machines JOSE H. ORALLO
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{(0,0), (10,10)}
{(010000, 000010), (1000, 0001)}
{(011,11), (10001, 11)}
: {0110y (o011 1200
DO THEY DISTIL OCCAM’S RAZOR? (o 10y on 1)
* Eém 00), (0011, 0000)}
{(

0100, 00), (001, ), (00, 00)}
0100. 1000). (10010.00101)}

Machine teaching used to generate minimal witness sets in Turing-complete P3:

= Comparing with humans and other Al systems:

80 100 Humans — = — MH
H <. @--  GPT-2ens — @ — MNMH —@—  Louise-exy

= o 3

N GPT-3DT -9 CPT-20xp -—@— L =

= ha

v 60 - 75 o
[ %} [+

] <

= =

= =

[} - o

3 10 g 50

- -

& )

< <

= 20- = 25

< <]

s 4

-1 <z

WS AST ASTI

(a) Mean accuracy by teaching batch. (b) Mean accuracy by concept complexity level.
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WHAT'S THE BEST PROMPT?

A good prompt usually includes some context and possibly a few examples:

“Seven plus eight is”

“I bought 7 apples and 8 pears. How many pieces of fruit?”
W\ '7+8=\\

“Input:2+1,0utput:3, Input:7+8,Output:”

®"The best prompt 7 to have continuation ¢¢ Prompting Size?

PS(c) = mT%n{S(n): S r— c}

Instructing Prior-Aligned Machines JOSE H. ORALLO 28



an armchair in the shape of an avocado, an armchair imitating an avocado,

MULTI-MODALITY

Generalising language models
" Hybridisation LM < Generative models

Convert movie titles into emoji.

= “Foundation” models bromt

= Textual input = multi-modal output SacktoFuture: @O @ ®
Batman: 8 ks

=  Multi-modal input = multi-modal output Hiibitifithos SRR

Winnie the Pooh: @ &3 T
= What's the “size” of a multi-modal prompt2| Giimecg g

Spider-Man:

Sample response

[ How can we evaluate these systems? ]

-
The Incredible Hulk: &
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ELEMENTS OF MULTIMODAL PROMPTING

| want { done
with Xq and X2

/ User (= 7

2. From my model of  EEeTelTyle K-iifeq
. = » M7, the command (prompt choice,

KA ! w(t.x1,X2) ma wrappin
6. Updating model : |0|* teaz’ (tix1.xg) may pping)
%, N S~ work
of M* VY st RS
- ~
A
AY
Cost of updating \
belief about M* ,"
Cost if wrong, 4, From my model of Extracting effort
inappropriate or M, u(q) is (unwrapping,
unsafe interpreted as y validating)

w(tX1,Xo) M*

Cost of running

3.Runs
the system

What can | make Easy potato Easy potato °

S omelette recipe! omelette recipe! The system
BT \IJ . tends to buy -

. things. Next time

1 will be more
@ . explicit about the @
M* I \ video
(M) ' O — ha
step 1 step 3 step 4 step 5 step 6

o ~ Schellaert, Plumed, Vold, Burden, Casares, Loe, Reichart, OhEigeartaigh, Korhonen, Orallo “Your Prompt is My
Instructing Prior-Aligned Muchines a0 4: Assessing the Human-Centred Generality of Multi-Modal Models”. submitted, 2022, JOSE H. ORALLO
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EFFECTIVENESS AS HUMAN-CENTRED GENERALITY

Human-centred generality (HCG): so far as a user h can use the system M™ in
(1) the completion of a wide range of cognitive tasks relevant for that user,
(2) with the commands that are prevalent for that user and

(3) with an interaction process that is effective for that user.

Va(M*) = 37 B(t[R) - B(plt, h, M*) - v (M, £, p)

tp Taszks FPrompts Utility

[ Effectiveness on expectation ]
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BUT ARE THEY REALLY EFFECTIVE?

Questionnaire with humans. Examples:

Mathematical knowledge: price discounting

1. Write the text you would input to the model to figure out the dollar cost of using the following discount (but remember
that the system doesn’t see this):

2 for 1
only this week
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BUT ARE THEY REALLY EFFECTIVE?

Questionnaire with humans. Examples:

Mathematical I Communication ability: writing difficult emails

1. Write the te.

that the sysf Imagine you work at a bank. One client invested some money with you two years ago, and you want to send an email to

your client on how the investment has gone so far

1. Write the text you would input to the system to generate, using the autocompletion system, an email explaining to
the client the evolution in the figure below (remember the system doesn’t see the figure):

§00
Fa0
840

A60

Instructing Prior-Aligned Machines JOSE H. ORALLO
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BUT ARE THEY REALLY EFFECTIVE?

Questionnaire with humans. Examples:

Mathematical | Communic Sequential reasoning: recipes

1. Write the te.

that the sysf Imagine yc 1. Write the text you would input to the model so that it figures out for you what can be cooked with the following

your client  ingredients (remember the system doesn’t see the figure):

1. Write tl
the cliel
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BUT ARE THEY REALLY EFFECTIVE?

Questionnaire with humans. Examples:

Mathematical | Communic Sequentiz Writing ability: song lyrics

1. Write the te:
that the syst

Imagine yc 1. Write In this task, you want to create the lyrics of a song that you could use to teach a two-year old child about animals.

your client  ingred 1. Write what text you would input to the system so that it creates the lyrics of a song about the animals you see in the
1. Write tl picture and what they’re doing. (remember the system doesn’t see the figure):

the cliel
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BETTER THAN WITHOUT THE MACHINE?

Comparing the task with the model and without the model
= Cost without the model:
Cum = 1 Y p(x) - py(31x) [Lx. ) + pG g (1)

X,y
" Cost with the model:

Crrn® E Y,y Gat, )| Gao ) +1 3 px) - pyg (Flae0) - [LCx,uP) + T x, D) |
x.y

u,w

T(w,u,%,5) = y(Wi G0, x) + U (u, 7)) + 8V (x, u()

ﬂ>

Human effort measured in seconds
« 8 o] 3 3
3 8 3 8 3

o

250

N
8

Human effort measured in seconds

w
S

Tasks without using language model as help

Variable
- Gy

Tasks using language model as help

Numeric Commun, Reasoning Writing

Commun. Reasoning Writing

Language models not yet cost-effective for Ly(x.y) Numeric
. I GPT-3 0.61
a general-purpose use, but getting closer! Human 031

Instructing Prior-Aligned Machines

0.59 0.35 0.47
0.38 0.35 0.47
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THE FUTURE OF MACHINE INSTRUCTION

Is prompting a new paradigm? Is it here to stay? Does it increase productivity?

Combines bits from programming, learning and teaching disglenotalyio0zz)

“Productivity Assessment of
Neural Code Completion”

Can include code snippets (e.g., Codex, Copilot) MAPS 2022

Can include examples (n-shot inference)

Works best if examples carefully chosen
Displays

Poor on situations where reasoning is necessary

Many unexpected side effects (on HCl and human cognition more generally)



INSTRUCTABILITY

Vi(M*) = Y P(t|h) P(plt, h, M*) - v (M*, £, p)

tp Tasks Instructions Litility

) GENERALITY
= An expectation of tasks <«

= An expectation of “instructions’” from the user < RELIABILILITY
® The utility: including instruction effort, running the system, result
extraction effort, costs and danger of errors, updating beliefs, ... EASE

The three elements in human h instructing a machine M™:
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HCI PERSPECTIVE

Narrowness

“heaven” area achievable

with good (prior) alignment!

TeaChi'].%qrnin C

Effort Risk
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BETTER COGNITIVE ALIGNMENT ( axa tuman-Like cocnimionz )

Multimodal

models
How to cognitively align Al with humans for more effective instruction? level

= Ensure that extrinsic inductive biases are aligned (capture human knowledge)
® Extrinsic patterns: “extract the month from this date: ‘15/7/2022™

= Ensure that intrinsic inductive biases are aligned with humans (simplicity priors)
® |ntrinsic patterns: “dance with me: right, left, right, left, ...”

" Ensure that systems infer with models of the world as we do (reasoning)
= Reasoning: “take the corridor that doesn’t have windows”

" Ensure that systems perceive like humans do (representation)

= Abstraction: “keep an eye on the sturdy man”
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Thank youl!

http: / /josephorallo.webs.upv.es/

jorallo@upv.es

With thanks to César Ferri and Jan Arne Telle for many ideas (and slides!), to Tony Cohn for the
pointers to Winston'’s papers and Wout Schellaert and Fernando Martinez-Plumd for some comments.

Thanks to OpenAl for access and quotas to their language models
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