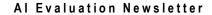
Eleven things we should NOT measure in Al

Jose H. Orallo^{1,2}

https://jorallo.github.io/



https://aievaluation.substack.com/

¹ Leverhulme Centre for the Future of Intelligence, UK

² University of Cambridge, UK

AI EVALUATION HAS BECOME A "THING", NOT A SCIENCE

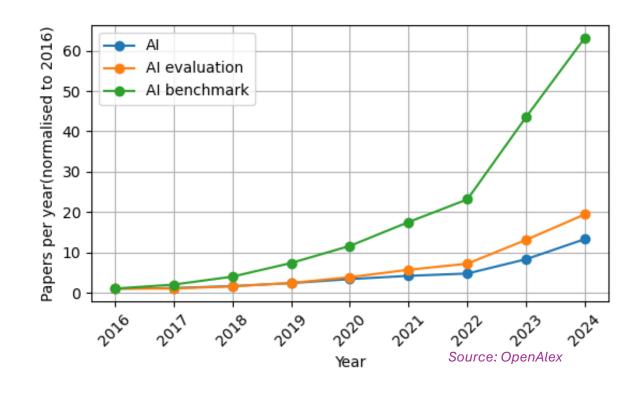
So much noise and resources wasted

- So many newcomers...
- So much reinventing the wheel...
- So many mistakes ignoring the basics...

Way forwards drown in the noise

Constructs, scales, standardisations, predictability, profiles, ...

It's becoming increasingly more difficult to articulate thoughtful discourses on Al evaluation



Ownloaded from https://www.scie

1. DON'T MEASURE AGGREGATE BENCHMARK RESULTS

Report at the instance level

- The devil is in the detail
- Other researchers can do more than you!
- Code not enough: rerunning experiments costly!

For general-purpose AI (e.g., LLMs)

- The tasks are changing
- Percentages will not apply for other tasks
- Not even same tasks out of distribution

136 14 APRIL 2023 • VOL 380 ISSUE 6641

science.org SCIENCE

ARTIFICIAL INTELLIGENCE

Rethink reporting of evaluation results in Al

Aggregate metrics and lack of access to results limit understanding

By Ryan Burnell¹, Wout Schellaert², John Burden^{1,3}, Tomer D. Ullman⁴, Fernando Martinez-Plumed², Joshua B. Tenenbaum⁵, Danaja Rutar¹, Lucy G. Cheke^{1,6}, Jascha Sohl-Dickstein⁷, Melanie Mitchell⁸, Douwe Kiela⁹, Murray Shanahan^{10,11}, Ellen M. Voorhees¹², Anthony G. Cohn^{13,14,15,16}, Joel Z. Leibo¹⁰, Jose Hernandez-Orallo^{1,2,3}

rtificial intelligence (AI) systems have begun to be deployed in high-stakes contexts, including autonomous driving and medical diagnosis. In contexts such as these, the consequences of system failures can be devastating. It is therefore vital that researchers and policy-

was incorrect. For other systems, the score for each instance might be based on how quickly the system completed its task, the quality of its outputs, or the total reward it obtained. Finally, performance across the various instances and tasks is usually aggregated to a small number of metrics that summarize how well the system performed, such as percentage accuracy.

But aggregate metrics limit our insight into performance in particular situations, making it harder to find system failure points and robustly evaluate system safety. This problem is also worsening as the increasingly broad capabilities of stateof-the-art systems necessitate ever more

example, the Beyond the Imitation Game Benchmark (BIG-bench) for language models includes over 200 tasks that evaluate everything from language understanding to causal reasoning (4). Aggregating across these disparate tasks—as the BIG-bench leaderboard does—reduces the rich information in the benchmark to an overall score that is hard to interpret.

It is also easy for aggregation to introduce unwarranted assumptions into the evaluation process. For example, a simple average across tasks implicitly treats every task as equally important—in the case of BIGbench, a sports understanding task has as much bearing on the overall score as a causal

An aggregate mean is the simplest inferential method

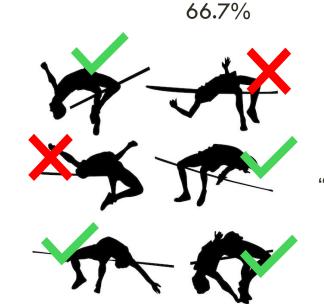
2. DON'T SAY CAPABILITY WHEN IT IS PERFORMANCE

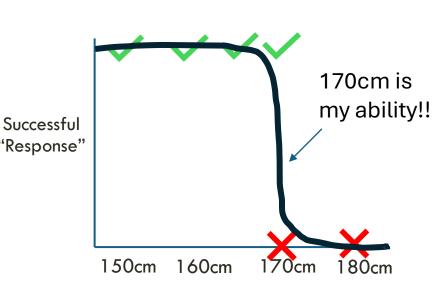
- Performance is:
 - a measure of a pair (system, item)
 - usually as a metric with no unit
- Capability is:
 - a property of a system
 - usually as a magnitude with a unit

MEASURE
OF ALL
MINDS
Evoluating Natural
and Artificial Intelligence

Task-oriented vs Ability-oriented Al evaluation Is this my capability?

 No, it depends on how high the bar was in the distribution of jumps!!!





J. H. Orallo "Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement". Artificial Intelligence Review, 2016.

3. DON'T MEASURE WITHOUT PREDICTION IN MIND

Don't give excuses:

- "Al is unpredictable", "Jagged Al", ...
- "You can only compare performance"

Al validity is predictable!

- With the right features!
 - Intrinsic difficult proxies correlate with performance
 - o If we could do this more generally... ADeLe

General Scales Unlock AI Evaluation with Explanatory and Predictive Power

https://kinds-of-intelligence-cfi.github.io/ADELE/

"you can never really **predict** for any given question whether a large language model will give you a correct answer"

Gary Marcus, Al Digest, 14 August 2023.

Article Open access | Published: 25 September 2024

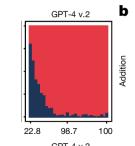
Larger and more instructable language models become less reliable but more predictable!

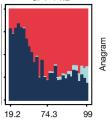
Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-Daval, Cèsar Ferri & José Hernández-Orallo

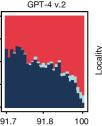
Nature **634**, 61–68 (2024) Cite this article

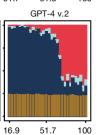
Subject LLM	LLM Accuracy↑	Demands (RF)		
		AUROC↑	ECE↓	
Babbage-002	0.102	0.751	0.007	
Davinci-002	0.157	0.741	0.007	
GPT-3.5-Turbo	0.414	0.795	0.020	S
GPT-40	0.713	0.852	0.023	
OpenAI o1-mini	0.770	0.837	0.021	
OpenAI o1	0.843	0.811	0.033	

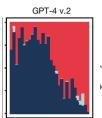
Instance-level success prediction for new benchmarks (fully OOD)











4. DON'T MEASURE AI OR BENCHMARK POPULATIONS

Demands and constructs are hard to find

- Factor analysis, IRT or Elo do the job for you!
- LLM "populations" change very quickly
 - The factors that were discriminating no longer are
 - LLMs are related in hierarchies (architectures, families)
- Benchmark "populations" change very quickly
 - The factors that were discriminating no longer are
 - Benchmarks are adversarial to LLM failures and saturation

Build scales that are criterion-referenced (rather tan norm-referenced) to allow commensurability across populations

IRT

Making Sense of Item Response Theory in Machine Learning

Fernando Martínez-Plumed¹ and Ricardo B. C. Prudêncio² and Adolfo Martínez-Usó³ and José Hernández-Orallo⁴

ECAI 2016, best paper award

Item response theory in AI: Analysing machine learning classifiers at the instance level *

Fernando Martínez-Plumed ^{a,*}, Ricardo B.C. Prudêncio ^b, Adolfo Martínez-Usó ^c José Hernández-Orallo ^a

^a Dept. of Computer Systems and Computation, Universitat Politècnica de València, 46022 Valencia, Spai ^b Control en Informática, Universidade Federal de Pernambuco, Recife (PE), Brazil ^c Universitat Jaume I de Castelló, Spain

Factor analysis

Burnell, R., Hao, H., Conway, A. R., & Orallo, J. H. (2023). Revealing the structure of language model capabilities. *arXiv preprint arXiv*:2306.10062.

Ilić, D., & Gignac, G. E. (2024). Evidence of interrelated cognitive-like capabilities in large language models: Indications of artificial general intelligence or achievement?. Intelligence,

One factor

5. DON'T MEASURE WITH HUMAN TESTS DIRECTLY

Intelligence

Accepted 22 December 2011

You will be misled several times...

- Human tests lose validity outside their group (e.g., human adults)
- They may rely on proxies that only work for human (short memory)
- May not test things that all humans have
- May test things that are irrelevant for Al

Still, many well-designed items can be reused

- Require re-annotation!
- Require new capability catalogues.

Don't use human taxonomies (e.g., CHC) to characterise Al but think of capabilities that are conceptually different (construct validity by design) IO tests are not for machines

David L. Dowe a, José Hernández-Orallo b,*

Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead

Tom Sühr

Tübingen AI Center tom.suehr@tuebingen.mpg.de

Massachusetts Institute of Technology olawale@mit.edu

Florian E. Dorner Max Planck Institute for Intelligent Systems Max Planck Institute for Intelligent Systems florian.dorner@tuebingen.mpg.de

> University of Tübingen augustin.kelava@uni-tuebingen.de

Max Planck Institute for Intelligent Systems Tübingen AI Center

Theory of Mind May Have Spontaneously Emerged in Large Language Models

Authors: Michal Kosinski*1

Theory of Mind Might Have Spontaneously Emerged in Large Language Models

Authors: Michal Kosinski*1

Evaluating Large Language Models in Theory of Mind Tasks

Michal Kosinski

Stanford University

March 2024

6. DON'T CONFOUND "VOLUME" WITH EVERYTHING ELSE

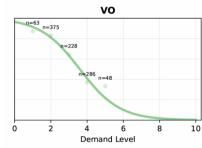
Volume makes things harder

- In perception
- In reasoning
- •
- In software engineering

Doesn't mean locally more difficult:

• Solve x=3*2, y=-2x+1, z=y+10, ...

Measure volume, separately from everything else!



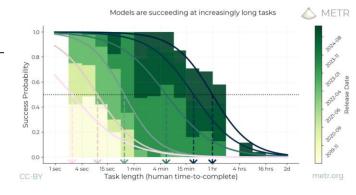
DeepSeek'sR1-Dist-Qwen-7B on ADeLe

Measuring AI Ability to Complete Long Tasks

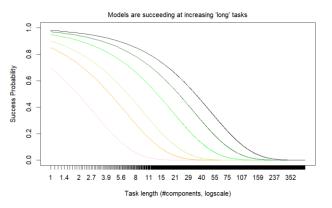
Thomas Kwa*, Ben West[†]*, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan Kinniment, Nate Rush, Sydney Von Arx

Ryan Bloom, Thomas Broadley, Haoxing Du, Brian Goodrich, Nikola Jurkovic, Luke Harold Miles[‡], Seraphina Nix, Tao Lin, Chris Painter, Neev Parikh, David Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler[§]

Elizabeth Barnes, Lawrence Chan



Simple geometric series on a log scale where models have isolated probabilities p of 0.7, 0.85, 0.9, 0.95, and 0.97 and 0.98:



https://aievaluation.substack.com/p/2025-march-ai-evaluation-digest

7. DON'T FORGET AI EVALUATION EVALUATION

Evaluation is a prediction problem

- Inferential models of validity: assessors
- Assessors can solve big challenges:
 - Familiarity ~ contamination
 - If the assessor underestimates OOD for all task demands
 - Contamination likely
 - Motivation ~ sandbagging
 - If the assessor overestimates for some task demands
 - Sandbagging likely

Science of Evaluation?

Test Predictive and Explanatory Power

The Evaluation of Artificial Intelligence as a Prediction Problem

February 2025

Author: Wout Schellaert

Advisors: José Hernández-Orallo Fernando Martínez-Plumed

Zhou, L., Moreno-Casares, P. A., Martínez-Plumed, F., Burden, J., Burnell, R., Cheke, L., ... & Hernández-Orallo, J. (2025). Predictable Artificial Intelligence. arXiv preprint arXiv:2310.06167

	System A Output	
	O ₁ : Forest Gum	
	O _{2:} : Harry Poter O ₃ : Bourne	
ll l	O ₄ : Up	
Щ	0 ₅ : Logan	
Task Instances	•••	
i. 4 @ 4	o ₆ : Ghostbuste	
i _{1:} ≯ ♥ ≯	Acc (Syste	
i3: 🧝 🗓 🔫		
i _{4:} 🍳 🙂 🏠	V919 ≪AIE	
i _{5:} 🗲 😈 🔨	System B	
	Output	

PredictaBoard: Benchmarking LLM Score Predictability

Lorenzo Pacchiardi¹, Konstantinos Voudouris^{1,2}, Ben Slater¹, Fernando Martínez-Plumed³, José Hernández-Orallo^{1,3}, Lexin Zhou^{1,3}, Wout Schellaert³

¹Leverhulme Centre for the Future of Intelligence, University of Cambridge, United Kingdom ²Institute for Human-Centered AI, Helmholtz Zentrum Munich, Germany ³VRAIN, Universitat Politècnica de València, Spain

Acc (System B): 0.5

Error (Assessor B): 0.029

True Score

(Validity)

0.87

0.79

0.12

0.94

0.93

0.12

0.05

0.95

0.89

0.03

Error (Assessor A): 0.132

True Score (Validity)

O1: Forest Gump

O2: Psycho

O3: Bourne

O₄: Up

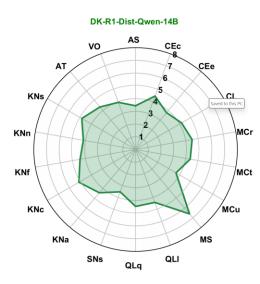
O5: Thor

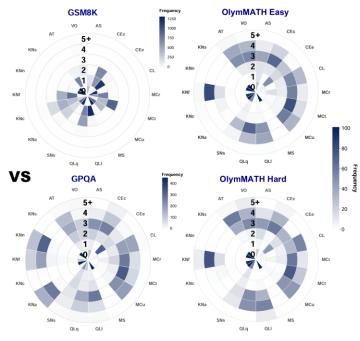
O6: Casper

8. DON'T MEASURE "INTELLIGENCE" (OR AGI LEVELS)

Measure profiles

- Benchmark profiles
- Al profiles
- Human profiles
 - o not "human-level" baselines
- Then policy-makers will choose the shapes, red lines and thresholds





JRC Publications Repository

General Purpose Al Key Considerations for the EU Al Act

https://publications.jrc.ec.europa.eu/repository/handle/JRC143255 https://publications.jrc.ec.europa.eu/repository/handle/JRC143256 https://publications.jrc.ec.europa.eu/repository/handle/JRC143257 https://publications.jrc.ec.europa.eu/repository/handle/JRC143258 https://publications.jrc.ec.europa.eu/repository/handle/JRC143259 https://publications.irc.ec.europa.eu/repository/handle/JRC143260

A Framework for the Categorisation of General-Purpose AI Models under the EU AI Act

Lorenzo Pacchiardi¹, John Burden¹, Fernando Martínez-Plumed², José Hernández-Orallo^{1,2}. Emilia Gómez³. David Fernández-Llorca³

¹Leverhulme Centre for the Future of Intelligence, University of Cambridge, UK

²Valencian Research Institute for Artificial Intelligence (VRAIN),

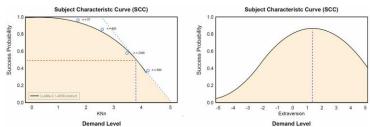
Universitat Politècnica de València, Spain

³European Commission, Joint Research Centre (JRC), Seville, Spain

General Scales Unlock AI Evaluation with Explanatory and Predictive Power

9. DON'T MEASURE "DANGEROUS CAPABILITIES"

- Capability means systematic performance, not possibility
 - EU Al Code of Practice:
 - Capabilities, propensities, affordances and context
- Propensities are tricky but cool!



Risk Model:

 $p(R_{j,i} = 1 \mid \mathbf{s}_j, \mathbf{t}_j, \mathbf{u}_j, ..., \mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i, ...) = ?$

Google DeepMind

Evaluating Frontier Models for Dangerous Capabilities

Mary Phuong^{*}, Matthew Aitchison^{*}, Elliot Catt^{*}, Sarah Cogan^{*}, Alexandre Kaskasoli^{*}, Victoria Krakovna^{*}, David Lindner^{*}, Matthew Rahtz^{*}, Yannis Assael, Sarah Hodkinson, Heidi Howard, Tom Lieberum, Ramana Kumar, Maria Abi Raad, Albert Webson, Lewis Ho, Sharon Lin, Sebastian Farquhar, Marcus Hutter, Grégoire Delétang, Anian Ruoss, Seliem El-Sayed, Sasha Brown, Anca Dragan, Rohin Shah, Allan Dafoe and Toby Sheylane^{*}

2024-4-8

*Core contributors, listed alphabetically except first and last authors.

To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.

propensities capabilities resources affordances demands context (humans, time, ...)

Probability model j in reason=high with an Internet browser doesn't access i by uplifting three non-cyber-experts? 11

10. DON'T MEASURE AI SYSTEMS ONLY

Al Evaluation is NOT ONLY about evaluating Al systems

- Evaluating humans, and human-Al ecosystems
 - We need good human models to test Al
- Evaluating societal impact...
 - We need good societal models

Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations

Kunal Handa; Alex Tamkin; Miles McCain, Saffron Huang, Esin Durmus

Sarah Heck, Jared Mueller, Jerry Hong, Stuart Ritchie, Tim Belonax, Kevin K. Troy

Dario Amodei, Jared Kaplan, Jack Clark, Deep Ganguli

Anthropic

Addictive Behaviors
Volume 166, July 2025, 108325

☑, Cora von Hammerstein ^{c d} ☑, Joël Billieux ^{e f} △ 図

People are not becoming "Alholic": Questioning the "ChatGPT addiction" construct

nature human behaviour

https://doi.org/10.1038/s41562-024-0199

Building machines that learn and think with people

Received: 11 April 2024

Katherine M. Collins © ¹⁶ - , I lia Sucholutsky ²⁸ , Umang Bhatt © ^{1,49},
Accepted: 23 August 2024

Tan Zhi-Xuan⁸, Mark Ho © ³, Vikash Mansinghka ³⁰, Adrian Weller © ^{1,49},
Published online: 22 October 2024

Jashua B. Tenenbaum ⁵⁰ ⁵⁰ Thomas L. Griffiths © ^{1,49}



Figure 3: Comparison of occupational representation in Claude.ai usage data and the U.S. economy. Results show most usage in tasks associated with software development, technical writing, and analytical, with notably lower usage in tasks associated with occupations requiring physical manipulation or extensive specialized training. U.S. representation is computed by the fraction of workers in each high-level category according to the U.S. Bureau of Labor Statistics, 2024).

Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge

Hanna Wallach ¹ Meera Desai ² A. Feder Cooper ¹ Angelina Wang ³ Chad Atalla ¹ Solon Barocas ¹ Su Lin Blodgett ¹ Alexandra Chouldechova ¹ Emily Corvi ¹ P. Alex Dow ¹ Jean Garcia-Gathright ¹ Alexandra Olteanu ¹ Nicholas Pangakis ¹ Stefanie Reed ¹ Emily Sheng ¹ Dan Vann ¹ Jennifer Wortman Vaughan ¹ Matthew Vogel ¹ Hannah Washington ¹ Abigail Z. Jacobs ²

11. DON'T CALL AI EVALUATIONS "EVALS"

If you call evaluations "evals" what would you call assessments?

Thank You!

https://aievaluation.substack.com/
Al Evaluation Newsletter

EXTRA: FIXING AI EVALUATION: WORK IN PROGRESS!

- General, absolute ratio scales (stable to SOTA/frontiers in Al, no saturation!)
- Al benchmarks and systems become commensurate! (apples with apples)
- Fully automated procedure (from results data, profiles and predictors take minutes!)
- Explanatory power (demand profiles, ability profiles)
- Predictive power at the instance level (especially out-of-distribution!)

General Scales Unlock AI Evaluation with Explanatory and Predictive Power

Lexin Zhou^{1,2,3} Lorenzo Pacchiardi¹ Fernando Martínez-Plumed³ Katherine M. Collins⁴
Yael Moros-Daval³ Seraphina Zhang^{1,5} Qinlin Zhao² Yitian Huang² Luning Sun⁶
Jonathan E. Prunty¹ Zongqian Li⁷ Pablo Sánchez-García⁸ Kexin Jiang Chen³
Pablo A. M. Casares³ Jiyun Zu⁹ John Burden¹ Behzad Mehrbakhsh³ David Stillwell⁶
Manuel Cebrian¹⁰ Jindong Wang¹¹ Peter Henderson¹² Sherry Tongshuang Wu¹³
Patrick C. Kyllonen⁹ Lucy Cheke^{1,5} Xing Xie² José Hernández-Orallo^{1,3}

ADeLe v1.0: A battery for Explanatory and Predictive Al Evaluation

This is a collaborative community, initiated by researchers at the Leverhulme Centre for the Future of Intelligence, University of Cambridge, for the use and extension of ADeLe v1.0, a battery for explanatory and predictive LLM evaluation.

The ADeLe (<u>An</u>notated-<u>De</u>mand-<u>Le</u>vels) battery includes 63 tasks from 20 benchmarks and was introduced in (ARXIV LINK!). Those tasks where annotated using 18 rubrics for <u>Demand-Level-Annotation</u> (<u>DeLeAn v1.0</u>) of general scales.

https://kinds-of-intelligence-cfi.github.io/ADELE/

Join us for follow-up projects