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SUPERHUMAN: BREAKING THE YARDSTICK!

= Superhuman level is now reached for many tasks:
= Can we meaningfully extrapolate beyond that level?
= What is 999,990 points (HRA) in Pac-Man?
= (Average human: 15,693, best human: 266,330)
= Meaningless!
= No worries, we build another benchmark
* In other tasks what does superhuman mean?
= Superhuman translation?
= Shouldn’t we need humans to determine this?

Al evaluation suffers a moving target phenomenon:
tasks are replaced, more human effort needed




To BoLDLY GO To HUMANITY AND BEYOND!

= Beyond human performance CIFAR10 — CIFAR100,
= A ‘challenge-solve-and-replace’ evaluation SQUAD1.1 — SQUAD2.0,
dynamics (Schlangen 2019), GLUE — SUPERGLUE,
= A ‘dataset-solve-and-patch’ adversarial Starcraft — Starcraft ||
benchmark coevolution (Zellers et al. 2019)
= Can we keep the benchmarks? e ottt et s e 21 o et e
= What's better-than-human Imagenet oo .
performance?
= Is 97% improvement over 95% as relevant as g o
95% over 93%? g

= |s the magnitude meaningful?
= |s extrapolation possible?
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THE MOVING TARGET: FIVE POSSIBLE CAUSES

= Causes of this ‘challenge-solve-and-replace’ phenomenon

= “Al effect” (McCorduck 2004): whenever something is automated, it’s not
intelligence any more!

= “Superhuman abyss”: once Al reaches superhuman level for a given task,
there are many arbitrary and unjustified extensions.

= “Resource neglect”: breakthroughs are obtained with huge resources in terms
of data, compute, supervision and other internalities/externalities.

= “Specialisation drift”: tendency of Al researchers to specialise to a particular
task, or to overfit to a benchmark (Goodhart’s law, reproducibility).

= “Cognitive-judge problem”: manual or automatic cognitive effort is needed to
produce and verify instances (change distribution rather than make it harder).



EXTENSIBLE YARDSTICKS: EXTRAPOLATION POSSIBILITIES

= The ‘Ceiling’ (C) category sets humansas a goal and cannot go beyond (e.g.,
Turing Test).

= The ‘Projectional’ (P) aims at humans and then extrapolates the original
dimension (e.g., Pac Man).

= The ‘Transitional’ (T) extends the space once human performance has been
reached (e.g., adding Gaussian noise to ImageNet, Dodge and Karam 2017).

= The ‘Universal’ (U) defines a (multidimensional) space from the very conception
of the task (e.g., brain cancer diagnosis).
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DOMAIN DIVERSITY: UNIFIED ANALYSIS

= Characterising all benchmarks:
= Mother (problem) distribution p,, vs test (benchmark) distribution p;
= Naive to assume they are equal
= Instance (Meta-)Features
= High-level features: type of objects in an image, text language, etc.
= Dimensions (selection or combination of meta-features)
= Mapped to difficulty metrics: contrast, no. objects or words, etc.
= Production of instances
= Collecting form the physical world or from human effort?
= Verification of instances
= Automatically, human judges, adversarially?



UNIFIED ANALYSIS: COMPARING DOMAINS

= Examples:

. Representative Mother distribution (p,;)  Test distribution (pr) . . . Proposed dimensions
Domain benchmark (application dependent)  (also used for training) Instance features Production Verification (difficulty metrics) MT ®
. NIST OpenMT Texts in human languages Length, language, syntactic ~ Choose sentence ~ Human trnsltn. Language divergence,
Translation (Han 2016) and translation queries A few collected corpora features, vocabulary, ... & target language  (subj. or scores) lexical ambiguity, ... ee C
. . 3064 brain tumor dataset . . Population groups, type of  Test patients and ~ Retrieve class Scan quality, size of spot,
Diagnosis (Cheng et al. 2015) Human population Medical samples cancer, kind of scan, ... collect (e.g., after 5 yrs.) antecedent info., ... @ U
Vehicle K-City Car trips in the world Trials in a testbed or Traffic, time, weather, region, Choose route or Car reaches Visibility, traffic density, o T
driving (Joerger et al. 2019) P restricted area. type of car, ... destination destination safely road state, ...
Face DiF dataset Human nopulation Extracted faces from Flickr Race, age, craniofacial areas, Make photo, add ~ Retrieve ID and  Trait unspecificity, photo ® T
Recognition (Merler et al. 2019) pop sample (YFCC-100M) ratios, symmetries, ... ID and collect check quality, pose, rotation, ...~
Image CIFAR / ImageNet Meaningful or useful Several image collections Kind of object, pose, size, Choose model, Humans or Texture & colour variation, o C
Generation  (Barratt and Sharma 2018) objects in the world & location, ... label or traits scores (FID, ...) compositional depth, ...
AlphaGo/Zero matches Some human and machine  Elo-like ranking, positions, Opponent ranking, number
Board games (Silver and others 2016) All human Go players g0 players playing styles, . Choose opponent  Opponent plays of empty cells ®&p P
Multi-agent Grid-based MAPF Warehouses. cities. etc Some grids from games,  Obstacles, topology, agents, Real cases or Calculate Bottlenecks, number of ® U
pathfinding (Stern et al. 2019) o o cities, mazes, ... elc. generators optimality agents, ... ’
Arcade games GVGAI All arcade games as much Selection for GVGAI Number of elements, Human designer Play eame Reward noise and sparsity, ® P
& (Perez-Liebana et al. 2016) as they are played competition obstancles, size, ... with VGDL v policy complexity, trials, ... ~
Language SuperGLUE Texts & questns in natural Collection of texts and Length, language, type of Choose text and Compare answer Syntactic and semantic om G
understanding (Wang et al. 2019) language in the world questions question, , ... human questions P complexity, distractors, ...
. Loebner’s prize Personality, gender, Humans (peers Human capabilities,
Turing test (Vardi 2015) Humans Chosen humans knowledge, capabilitics, ... 1imans chat and judges) unpredictability, ... C
Language PTB, Wikitext, ... Texts in natural language Topic, style, language, Choose topic, Humans or Semantic depth, style
generation (Radford et al. 2019) in the world A few collected corpora vocabulary, ... traits or lead text perplexity specificity, ... e C

= Preliminary and non-exhaustive table.




PRODUCING AND VERIFYING INSTANCES: COGNITIVE EFFORT

= Producing more difficulty instances. Types of distortions:
= Psychophysics or simple distortions (e.g. noise)
= Cognitive distortions:
= Humans introducing distractors in a text
= A generator creating modifications of existing instance: e.g., variations of a sentence
= A generator creates completely new synthetic images:

high FID is worse
(Kynkaanniemi et al. 2019)

. Bubble Baseball player Trumpet. ) Park bench
(FID = 63.5) (FID = 49.2) (FID = 100.4) (FID = 80.3)

= Verifying them:
= Fréchet Inception Distance not always accurate.
= Relying of humans to check them (crowdsourcing)



MULTIDIMENSIONAL SPACES: INTER/INTRA-DIMENSIONAL GENERALITY

= The dimensions of difficulty make up a space:
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= Types of generality:

= Inter-dimensional generality: balanced result for all dimensions: similar
levels of rotation and blur.

= |[ntra-dimensional generality: blue and red are steeper and hence ensure a
more consistent (saturated) start of the curve, over the green curve.



CONCLUSIONS AND OPEN QUESTIONS

= Superhuman performance breaks yardsticks that e \toeMAZING NVE IVAOVENTURES oF 23

took humans as a ceiling or with instances produced
and verified by humans.
= Moving target issues, extrapolation issues,
magnitudes, etc.
= The dimensions of difficulty allow for extrapolations,
where humans are points in this space.
= Commensurability issues
= How do we choose the difficulty metrics?

[ We need a difficulty theory for Al ]




ONGOING DEBATES AND INITIATIVES: LET'S WORK TOGETHER!

= |t's getting momentum!

= Moving from task-oriented to ability-oriented measurement (Hernandez-Orallo
2017a, Cambridge University Press, 2017b, AlIReviews)

= Mapping the whole landscape of intelligence (Bhatnagar et al. 2017, PTAI)

= Psychophysics in DRL benchmarks (Leibo 2018, arxiv)

= [tem Response Theory for ML/Al evaluation (Martinez-Plumed et al. 2019, AlJ)

= Challenge-solve-and-replace evaluation dynamics (Schlangen 2019, arxiv)

= Measurement theory for data science and Al at the Turing (Flach 2019, AAAI,
https://www.turing.ac.uk/research/research-projects/measurement-theory-data-science-and-ai)

= Multidimensional approach (Osband et al. 2019, arxiv).

= Metrology for Al (Welty et al. 2019, arxiv).

= Units of measurement (Hernandez-Orallo 2019, Nature Physics)

= EC’s Al Collaboratory (Martinez-Plumed et al. 2020, ECAI): aicollaboratory.org



https://www.turing.ac.uk/research/research-projects/measurement-theory-data-science-and-ai
http://aicollaboratory.org/

THANK YOU!

= Other Talks (http://josephorallo.webs.upv.es/)
= The What and How of Al Evaluation
= Diversity Unites Intelligence: Measuring Generality
= Measuring A(G)l Right: Some Theoretical and Practical Considerations
= Natural and Artificial Intelligence: Measures, Maps and Taxonomies
= The Mythical Human-Level Machine Intelligence e

= Book (http://allminds.org): v
= The Measure of All Minds: Evaluating Natural

and Artificial Intelligence, Cambridge 2017
= Other Events:

= epAl (Evaluating progress in Al, at ECAI, June 2020)
= http://dmip.webs.upv.es/EPAI2020/
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